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Abstract 
    Efforts to study consciousness using computational models over the last two decades 
have received a decidedly mixed reception. Investigators in mainstream AI have largely 
ignored this work, and some members of the philosophy community have argued that 
the whole endeavor is futile. Here we suggest that very substantial progress has been 
made, to the point where the use of computational simulations has become an 
increasingly accepted approach to the scientific study of consciousness. However, 
efforts to create a phenomenally conscious machine have been much less successful. 
We believe that this is due to a computational explanatory gap: our inability to 
understand/explain the implementation of high-level cognitive algorithms in terms of 
neurocomputational algorithms. Contrary to prevailing views, we will suggest that 
bridging this gap is not only critical to further progress in the area of machine 
consciousness, but is also a fundamental step towards solving the hard problem. We 
briefly describe some small steps we have taken recently to make progress in this area. 

1 Introduction 
While the idea of a conscious machine is not a particularly new one (Butler, 1872), it is only over 

the last two decades that it has motivated sustained work on developing computational models of the 
conscious mind, either via software on computers or in physical robots. Such studies concerning 
artificial consciousness have been intended to advance our understanding of human consciousness 
and its relationship to cognition, to contribute to increased functionality in future AI systems, and (at 
times) to design a phenomenally conscious machine.  

At present, efforts to study artificial consciousness remain highly controversial. Researchers in 
mainstream AI (with a few exceptions) have largely ignored work in this area. In philosophy, while a 
variety of opinions have been expressed, a significant number of these would make pursuit of machine 
conscious appear to be a rather fruitless task. For example, it has been suggested that, in general, the 
objective methods of science cannot shed light on consciousness due to its subjective nature (McGinn, 
2004), making computational investigations a moot point. More specific arguments have been 
presented in recent years that phenomenal machine consciousness is simply not possible. Examples 
along these lines include analyses indicating that phenomenal machine consciousness would imply 
panpsychism (Bishop, 2000), that computation is insufficient to underpin consciousness (Manzotti, 
2012), and that machines cannot be conscious due to their non-organic nature (Schlagel, 1999). 
Individuals who advocate or study the possibilities of machine consciousness have so far not found 
such arguments persuasive.  

In a recent review of work in this area, we found that, in contrast to what one might expect based 
on such negative viewpoints, very substantial progress has been made over the last several years in the 
field of artificial consciousness (Reggia, 2013). Here we show that by distinguishing between 
simulated consciousness and instantiated consciousness, it is possible to clearly delineate where 
significant progress is being made, and where the jury is still out. We then argue that a major and 
fundamental barrier to further progress on creating phenomenal/instantiated machine consciousness is 



a computational explanatory gap: our current lack of understanding concerning how high-level 
cognitive computations can be captured in low-level neural algorithms. The significance of this gap is 
that bridging it may be a critical step in addressing the original philosophical explanatory gap, and 
thus in making advances on the mind-brain problem during coming years. As evidence that bridging 
the computational explanatory gap may be tractable, a brief summary is given of some (small) steps 
we and others have taken recently towards implementing high-level cognitive processing in 
neurocomputational models. 

 

2 Progress in Artificial Consciousness 
To understand the sense in which recent work on artificial consciousness has made progress, it is 

useful to distinguish between two possible objectives for such work: simulation versus instantiation of 
consciousness. Such a distinction parallels the distinction between information processing aspects of 
consciousness (functionalism) and subjective experience (phenomenal consciousness).  

With simulated consciousness, the goal is to capture some aspect of consciousness or its 
neural/behavioral correlates in a computational model, much as is done in using computers to simulate 
other natural processes (e.g., models of weather/climate).  There is nothing particularly mysterious 
about such work; just as we would not expect that a computer used to simulate a thunderstorm would 
become wet inside, we should not expect that a computer used to model some aspect of conscious 
information processing would be “conscious inside”. There is no real claim that phenomenal 
consciousness is actually present in this situation. The results of a simulation are assessed based on 
the extent to which they correspond to experimentally verified correlates of consciousness such as 
neurophysiological measures, or on the extent to which they may contribute increased functionality to 
future artificial systems. In contrast, with instantiated consciousness, the issue is the extent to which 
an artificial system actually experiences phenomenal consciousness. Does it experience qualia and 
does it have subjective experiences? This is a much more difficult and controversial question. The 
dichotomy between simulated and instantiated consciousness is reminiscent of the distinction between 
weak AI (behavioral criteria) and strong AI (artificial mind) (Seth, 2009).  

Recognizing the difference between simulated and instantiated machine consciousness clarifies 
the nature of the progress that has been made in artificial consciousness research over the last two 
decades. From the perspective of simulated consciousness, neurocomputational modeling has 
successfully captured a number of neurobiological, cognitive and behavioral correlates of conscious 
information processing as machine simulations. To give just a few examples: 

• Neurocomputational models that increase activation of their global workspace just when 
performing difficult tasks associated with conscious effort in people (Dehanene et al., 1998), 
supporting global workspace theories of consciousness (Baars, 1988, 2002). 

• The unexpected finding that information integration theory (Tononi, 2008) identifies gating 
modules as the most conscious components of a neurocontroller (Gamez, 2010), linking 
gating mechanisms in cognitive control (Sylvester et al, 2013) to consciousness studies. 

• Demonstration that expectation-driven robots can recognize themselves in a mirror (Takeno, 
2008), essentially passing the well-known mirror test used to identify self-recognition in 
animals (Gallup, 1970). 

• Showing that second-order neural networks can match behavioral data from human blindsight 
subjects during post-decision wagering tasks (Pasquali et al., 2010), supporting core aspects of 
higher order thought (HOT) theories of consciousness (Rosenthal, 1996; Carruthers, 2005). 



• Establishing that corollary discharge signals in neurocomputational models of human top-
down attention control mechanisms can account for some human data involving conscious 
information processing (Taylor et al., 2007). 

Clearly, these and other computational models of simulated consciousness have provided useful 
information for advancing consciousness studies; we do not consider them further in this paper. 

The situation is quite different from the perspective of instantiated consciousness. Several 
investigators have claimed to have either designed or created phenomenally conscious artifacts. To 
give just a few examples of the claims that have been made: 

• Any system that maintains a correspondence between high-level, symbolically represented 
concepts and low-level data stream entities, and that has a reasoning system which makes use 
of these grounded symbols, has true subjective experiences corresponding to qualia and a 
sense of self-awareness (Kuipers, 2005). 

• A system has subjective experience to the extent that it has the capacity to integrate 
information (Tononi, 2004). 

• Computational systems supporting higher order syntactic thoughts experience qualia (Rolls, 
2007). 

While such claims are intriguing, at the present time it seems reasonable to conclude that no existing 
computational approach to artificial consciousness has yet presented a compelling demonstration of 
instantiated consciousness in a machine, or even clear evidence that instantiated machine 
consciousness will eventually be possible. This conclusion does not preclude the possibility of 
ultimately creating a phenomenally conscious machine any more than the inability to produce 
machine-powered flight prior to the Wright brothers showed that mechanical flying machines were 
impossible (as some scientists argued at the time). But it does raise the issue of what can be done to 
resolve whether or not instantiated machine consciousness is possible. Resolution of this issue 
depends on clearly identifying the main barriers to further progress that are tractable, or at least 
amenable to scientific investigation. 

3 The Computational Explanatory Gap 
There are a number of well-recognized barriers to creating instantiated machine consciousness. 

These include the absence of a generally agreed-upon definition of consciousness, our limited 
understanding of its neurobiological correlates, and the “other minds problem” applied to artifacts 
(how could we possibly know whether or not a machine is conscious?). There is another less 
recognized barrier, the computational explanatory gap, that we would argue is also of critical 
importance: our current lack of understanding of how high-level cognitive information processing can 
be mapped onto low-level neural computations. This gap can be contrasted with the widely 
recognized philosophical explanatory gap between a successful functional/computational account of 
consciousness and the subjective experiences that accompany it (Levine, 1983). The computational 
explanatory gap is not a mind-brain issue per se. Rather, it is a gap in our understanding of how 
computations/algorithms at a high level of cognitive information processing can be mapped into 
computations/algorithms at the low level of neural networks.  In other words, it is a purely 
computational issue (Figure 1). Contemporary philosophical thought tends to largely dismiss solving 
the computational explanatory gap as the “easy problem”, while bridging the philosophical 
explanatory gap is viewed as the “hard problem” (Chalmers, 1996). In contrast, we conjecture that, 
with high probability, this perspective will turn out to be precisely backwards; the computational 
explanatory gap is actually the more fundamental issue, and that once it is bridged, the philosophical 
explanatory gap will be found to be tractable and fade away.  



 
The computational explanatory gap has influenced work in a number of disciplines, such as AI and 

neuroscience. In AI this gap is reflected in the long-standing debate concerning the relative values of 
top-down (symbolic) vs. bottom-up (neural, swarm, etc.) approaches to creating machine intelligence 
(Franklin, 1995). This (in)famous debate has largely missed the point that these two approaches are 
not so much competing alternatives as complementary in what they each capture about intelligence.  
Top-down symbolic methods have excelled at modeling high-level cognitive tasks such as reasoning, 
decision making, “understanding” natural language, and planning, but they have been much less 
successful at pattern recognition and low level control. They have generally been found to be brittle, 
for example, failing in the context of noise or novel situations. In contrast, neurocomputational 
methods have roughly the opposite strengths and weaknesses: they are remarkably effective and 
robust in learning low-level pattern classification (“input”) and low level control (“output”) tasks, but 
are not nearly as effective for high-level cognitive tasks. Similarly, the computational explanatory gap 
is evident in neuroscience, where a lot is known at the macroscopic level about associating high-level 
cognitive functions with brain regions (pre-frontal cortex “executive” regions, language cortex areas, 
etc.), and a lot is known about microscopic functions of neural circuitry all the way down to the 
molecular and genetic levels, but it remains unclear how to put those two types of information 
together. This widely-recognized situation has led to a recent call by prominent neuroscientists for a 
“brain activity map initiative” that would develop the technology for bridging this gap (Alivisatos et 
al., 2013). The key point here is that this gap in our neuroscientific knowledge is, at least in part, a 
manifestation of the underlying computational explanatory gap: how are the “algorithms” associated 
with large-scale brain regions (e.g., Granger, 2006) mapped into computations performed by 
microscopic biological neural nets? 

Why is bridging the computational explanatory gap of critical importance in addressing the 
possibility of instantiated machine consciousness? The reason is that bridging this gap would allow us 
to do something that is currently beyond our reach: directly and cleanly compare (i) computational 
mechanisms associated with conscious/reportable high-level cognitive activities, and (ii) 
computational mechanisms associated with lower-level unconscious information processing. In effect, 
it would allow us to determine whether or not there are computational correlates of consciousness in 
the same sense that there are neurobiological correlates of consciousness. If these correlates can be 
identified, then it would provide a direct route to investigating the possibility of instantiated machine 
consciousness. If no correlates/differences between the neurocomputational implementation of 
conscious and unconscious cognitive functions can be found, that too would have tremendous 
implications for the modern functionalist/computationalist viewpoint of the mind-brain problem. 
 

4 Steps Towards Bridging The Gap 
If one allows the possibility that the “easy problem” represented by the computational explanatory 

gap is important, and perhaps even a fundamental barrier to instantiated machine consciousness, then 
the immediate research program becomes determining how we can bridge this gap. Encouragingly, 

Figure 1: Mind the gap: the well-known philosophical 
(left) and computational (right) gaps. Our argument is 
that the latter may ultimately prove to be the more 
fundamental problem, and that focusing on solving it 
rather than dismissing it may be the key to advancing 
future work on instantiated machine consciousness. 



there has been a substantial effort over the last two decades by researchers unconcerned with the issue 
of machine conscious to understand how higher cognitive functions (reasoning, language, etc.) can be 
implemented in neurocomputational substrates. While these models have not yet reached the 
effectiveness of models based on top-down, symbolic AI systems, they have clearly shown that 
substantial progress can be made in bridging the computational explanatory gap. 

In addition, a number of investigators explicitly studying artificial consciousness have examined 
hypotheses that relate to the computational explanatory gap. For example, some studies have created 
hybrid symbolic-connectionist systems, consisting of a high-level cognitive module implemented as a 
symbolic, top-down architecture, plus a lower-level cognitive module implemented using bottom-up 
neurocomputational methods (Chella, 2007; Kitamura et al, 2000; Sun, 1999; these and others are 
reviewed in Reggia, 2013).  Such models can be viewed as starting with the interesting claim that 
symbolic information processing per se is the basis of conscious information processing, and 
investigate the extent to which a model can account for some neural and cognitive correlates of 
consciousness. In contrast, the computational explanatory hypothesis as described here suggests that 
the critical issue is how to replace the symbolic (often production rules or predicate logic) modules of 
such models with neurocomputational implementations, and then to determine what (if any) 
differences exist between the properties of the needed computational mechanisms at the two levels. 
From this viewpoint, symbolic-connectionist hybrid architectures (regardless of their potential validity 
as a theory of consciousness) obscure the central issue of the computational explanatory gap by 
introducing a separate confounding factor (i.e., the a priori introduction of symbolic vs. connectionist 
information processing methods in addition to conscious vs. unconscious information processing). 

More directly related to the computational explanatory gap is recent work that has tried to directly 
extend neurocomputational methods to high-level cognitive tasks associated with consciousness. 
Metacognitive neural networks provide a good example of this. Tied to philosophical concepts from 
higher-order thought (HOT) theories (Rosenthal, 1986; Carruthers, 2005), such studies have been 
based on second-order neural networks that interpret the behavior of first-order networks (Cleeremans 
et al., 2007; Pasquali et al., 2010).  

We have been taking a somewhat different approach to diminishing the computational explanatory 
gap by trying to reverse-engineer functional properties of cerebral cortex, including its large-scale 
architecture, with respect to language and working memory. This work is inspired in part by 
contemporary evidence that higher cognitive functions are implemented by a large-scale network of 
cortical regions; these regions interact directly via well-known neuroanatomical pathways, and 
indirectly via pathways between cortical regions and subcortical centers (thalamic nuclei, basal 
ganglia, hippocampus, etc.). With respect to language, we have established that it is possible for 
neurocomputational models of the cortical language areas (Fig. 2, left) to learn to perform simple 
word processing tasks while grounding words in “seen” images, and that such models break down in 
ways similar to what is observed in people following localized cortical damage (Weems and Reggia, 
2006). Further, we recently extended this investigation, showing that a neurocomputational model 
could learn to perform simple question answering at a sentence level (Monner & Reggia, 2012a,b), a 
task that has only been modeled previously using the methods of symbolic AI. Interestingly, analysis 
of these and similar models has discovered that they learn a grounded latent symbol system that 
supports combinatorial computations using distributed representations (Monner & Reggia, 2011, 
2013) – a clear step towards bridging the computational explanatory gap. With respect to working 
memory, we have developed attractor neural network models that learn temporal sequences and 
shown that their performance can match empirical data from human behavioral experiments (Winder 
et al., 2009; Sylvester et al., 2010). Most recently we have studied a region-pathway network model, 
inspired by prefrontal cortex (Fig. 2, right), where regions in the model are each sequence-learning 
attractor neural network modules (Sylvester et al., 2013). This latter model captures some aspects of 
human cognitive control of both working memory and the learning of task procedures autonomously, 
produces accuracy and timing results that correlate with those of human subjects performing similar 



tasks, and makes testable predictions. These language and working memory models suggest to us that 
latent symbol systems, and the use of cortical modules that not only exchange information but also 
gate one another, are potential candidates for computational correlates of consciousness. All of these 
results related to language and working memory represent small steps towards bridging the 
computational explanatory gap, encouraging further work in this direction. 

 
 

Figure 2: Cerebral cortex can be viewed as a large-scale network of cortical regions connected by 
pathways. This is illustrated here for language (left) and cognitive control of working memory (right). 

5 Discussion  
Distinguishing between simulated and instantiated machine consciousness clarifies both the 

progress and limitations of past work in the field of artificial consciousness. Existing computational 
models have successfully captured a number of neurobiological, cognitive and behavioral correlates of 
conscious information processing as machine simulations. Put simply, it has been possible to develop 
what we have called simulated artificial consciousness. This is extremely important; it is providing a 
way to test whether theories about key neural, cognitive and/or behavioral correlates of consciousness, 
when implemented as computer models, can produce results in agreement with experimental data. It 
also represents important progress towards producing machines that can exhibit external behaviors 
that are associated with human consciousness, and thus may lead to future artificial agents that can 
reason more effectively and interact with people in more natural ways. It appears likely that simulated 
consciousness will play a significant role in future work on creating an artificial general intelligence. 
Put simply, work on simulated consciousness has become an effective and accepted methodology for 
the scientific study of consciousness, especially within the framework of functionalism. 

In contrast, at the present time no existing approach to artificial consciousness has presented a 
compelling demonstration of instantiated (phenomenal) consciousness in a machine, or even clear 
evidence that instantiated machine consciousness will eventually be possible. While some 
investigators have made intriguing claims that the approach they are using is or could be the basis for 
a phenomenally conscious machine, none is currently generally accepted as having done so. In our 
opinion, none of the past studies of which we are aware, even when claimed otherwise, has yet 
provided a convincing case for how a given methodology would eventually lead to instantiated 
artificial consciousness.  

Our central argument here is that this apparent lack of progress towards instantiated machine 
consciousness is largely due to the computational explanatory gap: our current lack of understanding 
how higher-level cognitive algorithms can be mapped onto neurocomputational algorithms. While 
those versed in mind-brain philosophy may be inclined to dismiss this gap as just part of the “easy 
problem”, we think such a view is at best misleading. This gap has proven surprisingly intractable to 
over half a century of research on neurocomputational methods, and existing philosophical works 



have (to our knowledge) provided no insight into why such an “easy problem” has proven to be so 
intractable. On the contrary, we would argue that the computational explanatory gap is a fundamental 
issue that needs a much larger collective effort to clarify and resolve. It is possible that bridging the 
computational explanatory gap will make bridging the philosophical explanatory gap tractable, and 
that it may lead to an operational test for the presence of phenomenal consciousness.  Doing so, and 
bridging this gap, is possibly the most critical step we could take during the next decade to advance 
prospects for a phenomenally conscious artifact and a deeper understanding of the mind-brain 
problem. Perhaps if progress can be made in this way, the insights provided will reveal that the “hard 
problem” is ultimately much easier than it currently appears.  
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