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The Neural Executive

Can Gated Attractor Networks
Account for Cognitive Control?
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Gated Attractors Learning
Instruction Sequences



Artificial Intelligence?

"Al is the study of how to make computers do things
at which, at the moment, people are better.”

— E. Rich & K. Knight,
Artificial Intelligence,
1983

<21 Deep Blue, 1997
Il Watson, 2011
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Motivation

o Gap between neural & symbolic Al systems
o Symbolic: planning, goals, rules, deduction, ....
¢ Neural: perception, motor control, pattern rec, ...

o Neural systems are
very "hard-wired”

o Behavior Is often baked
INto architecture

© New problems require
entirely new systems
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Cognitive Control

> Managing & recruiting other cognitive processes.
o "Executive functions”
¢ e.g. maintaining working memory, shifting
attention, selecting responses, setting goals,
iInhibiting irrelevant stimuli...

Simple for Simple for
Symbolic Al Systems the Human Brain
Pl: $$ -> *

P2: *$ -» *

P3: *x <> x*

P4: * <> null & halt
P5: $xy -> y$x ..
P6: null -> % So why is it so hard for

Neural Networks?




GALIS Three Hypotheses

o Cortex is a distributed net  .---~
. . . ARV ot
of interacting regions /et
- - '\4 7 ;_
o Functional segregation & T Yo ,’«,,,——\
function integration == \EP

o Regions = attractor nets
¢ Can process sequences
© Regions "gate” each other
as well as passing input

¢ .e. modulate flow between
other regions

Adapted from: Vertes, et al. "Simple
models of human brain functional
networks.” PNAS 2012. 9



Working Memory:
Sequential Attractor Nets
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Adding Cognitive Control

o Multiple networks
¢ Linked with gated connections

> Two memory layers
¢ Original one for external stimull
> New memory for task procedures
¢ Using the same paradigm
¢ Task memory controls gating












Instruction Sequence Memory

[ make tea | ? ] |:> [ make tea | boil water ]



Instruction Sequence Memory

[ make tea | ? ] [:::i} [ make tea | boil water ]

&

[ make tea | get teabag ]

=

[ make tea | steep tea 1]

=

[ make tea | add sugar ]



¢ Given sequence of inputs:
..does most recent input match input n steps ago?

¢ Must maintain sequence in WM; make judgments

S-back
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o GALIS model learns n=1,2,3,4,5
¢ Learns all five without knowing which it will perform

¢ Version determined by input patterns only



GALIS Architecture
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Human Comparison:
Accuracy
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Human Comparison:
Response Time
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Changing n
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Visuospatial Architecture

Executive System

Location \ WM <> Conflict
A

Visual ‘ CTRL \
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[ input ] Object
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Visuospatial Architecture
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Reconcile the Neural
and the Symbolic

Neural Symbolic

o Hopfield nets ¢ Discrete attractors

> Non-linear o Gating T open/closed
iINnteractions excite/inhibit
between layers update/maintain

o Hebbian learning ¢ Stored programs
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Instruction vs. Construction

¢ Behavior based on memory contents
not just architecture
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Bletchley Park Bombe, 1940

¢ Can "program” a neural net

> Now programs are hand-crafted by modeler
¢ Store =) improve =—) learn ab Initio



Thank you

www.cs.umd.edu/~jared/

Sylvester, Reggia, Weems & Bunting. “Controlling Working
Memory with Learned Instructions.” Neural Networks 41. 2013.



