Jared Sylvester 15 July 2013

The Neural Executive

Can Gated Attractor Networks Account for Cognitive Control?

Computer Science

GALIS

Gated Attractors Learning Instruction Sequences

Artificial Intelligence?

"AI is the study of how to make computers do things at which, at the moment, people are better."

– E. Rich & K. Knight, *Artificial Intelligence*, 1983

Deep Blue, 1997

Watson, 2011

Artificial Intelligence?

"AI is the attempt to make computers do what they do in the movies."

– Astro Teller

Artificial Intelligence?

"AI is the attempt to make computers do what they do in the movies."

– Astro Teller

Motivation

- Gap between neural & symbolic AI systems
 Symbolic: planning, goals, rules, deduction,
 Neural: perception, motor control, pattern rec, ...
- Neural systems are very "hard-wired"
 - Behavior is often baked into architecture
 - New problems require entirely new systems

GALIS is designed to address both of these

Cognitive Control

- ♦ Managing & recruiting other cognitive processes.
 - ◊ "Executive functions"
 - *e.g.* maintaining working memory, shifting attention, selecting responses, setting goals, inhibiting irrelevant stimuli...

GALIS' Three Hypotheses

- Cortex is a distributed net of interacting regions
 - ♦ Functional segregation & function integration
- ♦ Regions ≈ attractor nets
 ♦ Can process sequences
- Regions "gate" each other as well as passing input
 - *i.e.* modulate flow between other regions

Adapted from: Vértes, et al. "Simple models of human brain functional networks." PNAS 2012.

Working Memory: Sequential Attractor Nets

time

Working Memory: Sequential Attractor Nets

Adding Cognitive Control

Multiple networks

 Linked with gated connections
 Two memory layers
 Original one for external stimuli
 New memory for task procedures
 Using the same paradigm
 Task memory controls gating

[make tea | ?] [make tea | boil water]

17

n-Back

♦ Given sequence of inputs:

...does most recent input match input *n* steps ago?

Must maintain sequence in WM; make judgments

- ♦ GALIS model learns n=1,2,3,4,5
 - Learns all five without knowing which it will perform
 - Version determined by input patterns only

GALIS Architecture

Human Comparison: Accuracy

Human Comparison: Response Time

Changing *n*

Visuospatial Architecture

Visuospatial Architecture

Reconcile the Neural and the Symbolic

Neural

- Hopfield nets
- Non-linear
 interactions
 between layers
- Hebbian learning

Symbolic

- Discrete attractors
- ♦ Gating { open/closed excite/inhibit update/maintain
- Stored programs

Instruction vs. Construction

Behavior based on memory contents not just architecture

Bletchley Park Bombe, 1940

von Neumann & ENIAC, 1946

◇ Can "program" a neural net
 ◇ Now programs are hand-crafted by modeler
 ◇ Store → improve → learn ab initio

Thank you

www.cs.umd.edu/~jared/

Sylvester, Reggia, Weems & Bunting. "Controlling Working Memory with Learned Instructions." *Neural Networks* 41. 2013.