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Artificial Intelligence? 
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“AI is the study of how to make computers do things 
 at which, at the moment, people are better.” 

— E. Rich & K. Knight, 
Artificial Intelligence, 

1983 

Watson, 2011 
Deep Blue, 1997 



Artificial Intelligence? 
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“AI is the attempt to make computers 
 do what they do in the movies.” 

— Astro Teller 



Artificial Intelligence? 
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“AI is the attempt to make computers 
 do what they do in the movies.” 

— Astro Teller 



Motivation 
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!  Neural systems are 
very “hard-wired” 
!  Behavior is often baked 

into architecture 

!  New problems require 
entirely new systems 

!  Gap between neural & symbolic AI systems 
!  Symbolic: planning, goals, rules, deduction, …. 
!  Neural: perception, motor control, pattern rec, … 

GALIS is designed to address both of these 
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Cognitive Control 
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Simple for 
Symbolic AI Systems 

λ	

P1:	  $$	  -‐>	  *	  
P2:	  *$	  -‐>	  *	  
P3:	  *x	  -‐>	  x*	  
P4:	  *	  -‐>	  null	  &	  halt	  
P5:	  $xy	  -‐>	  y$x	  
P6:	  null	  -‐>	  $	  

Simple for 
the Human Brain 

So why is it so hard for 
Neural Networks? 

!  Managing & recruiting other cognitive processes. 

!  “Executive functions” 

!  e.g. maintaining working memory, shifting 

attention, selecting responses, setting goals, 

inhibiting irrelevant stimuli… 



!  Cortex is a distributed net 
of interacting regions 
!  Functional segregation & 

function integration 

!  Regions ≈ attractor nets 
!  Can process sequences 

!  Regions “gate” each other 
as well as passing input 
!  i.e.  modulate flow between 

  other regions 

GALIS’ Three Hypotheses 
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Adapted from: Vértes, et al. “Simple 
models of human brain functional 
networks.” PNAS 2012. 
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Working Memory: 
Sequential Attractor Nets 
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Working Memory: 
Sequential Attractor Nets 
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Adding Cognitive Control 

!  Multiple networks 
!  Linked with gated connections 

!  Two memory layers 
!  Original one for external stimuli 
!  New memory for task procedures 
!  Using the same paradigm 

!  Task memory controls gating 

12 



Instruction Sequence Memory 

13 



Instruction Sequence Memory 
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Instruction Sequence Memory 
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Instruction Sequence Memory 
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[ make tea | ? ] [ make tea | boil water ] 



Instruction Sequence Memory 
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[ make tea | ? ] [ make tea | boil water ] 

[ make tea | get teabag ] 

[ make tea | steep tea ] 

[ make tea | add sugar ] 

        [ ... ] 



n-Back 

!  Given sequence of inputs: 
    …does most recent input match input n steps ago? 

!  Must maintain sequence in WM; make judgments 

!  GALIS model learns n=1,2,3,4,5 
!  Learns all five without knowing which it will perform 

!  Version determined by input patterns only 
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(first) (last) 

3-back 
A D J A E F D K J D C A K J F F H D F	


Match No Match No Match 



Memory Training Gate!

Memory Input Gate!

Context Gate!

Encoder Update Gate!

Visual Input!

Compare!

Module!

“Match”!

Output Node!

“No-Match”!

Output Node!

Output Gate!

Memory Unlearning Gate!

n Input!

(“goal”)!

Context!

Module!

Control!

Module!

Working Memory!
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GALIS Architecture 



Controller 
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Encoder Input (96)!

Encoder Hetero-associative (320)!

Encoder Auto-associative (320)!

n Input Layer (64)! Context Module (32)!

Action Selection (7)!

Decoder Output (6)!

Cue Nodes (320)! Response Nodes (192)!

Encoder!

Update!

Gates!

INSTRUCTION SEQUENCE MEMORY (512)!

Output to Gates!



Human Comparison: 
Accuracy 
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Human Comparison: 
Response Time 
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Changing n 
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Visuospatial Architecture 
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Visuospatial Architecture 
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!  Hopfield nets !  Discrete attractors 
Neural Symbolic 

!  Non-linear 
interactions 
between layers 

!  Gating 

!  Hebbian learning !  Stored programs 

open/closed 
excite/inhibit 
update/maintain	  

Reconcile the Neural 
and the Symbolic 



Instruction vs. Construction 
!  Behavior based on memory contents 

  not just architecture 

!  Can “program” a neural net 
!  Now programs are hand-crafted by modeler 

!  Store       improve       learn ab initio 
27 

Bletchley Park Bombe, 1940 von Neumann & ENIAC, 1946 



www.cs.umd.edu/~jared/ 

Thank you 

Sylvester, Reggia, Weems & Bunting. “Controlling Working 
Memory with Learned Instructions.” Neural Networks 41. 2013. 
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