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Abstract

AI systems can be grouped into two main categories: symbolic and neural. Each has
advantages in certain types of tasks, and to date symbolic systems are typically superior at
cognitive control and executive function. This paper presents a model using the GALIS
framework which probes at this gap by successfully completing the n-Back cognitive control
task at human-like levels using a neural approach. Several aspects of the model discussed
here, in particular gated sequential attractor networks and behavior driven in part from the
learned contents of instruction memory, allow it to behave in ways that are more typical of
symbolic systems.

1 Introduction

Approaches to building intelligent systems can be broadly categorized into two camps: top-down,
symbolic systems and bottom-up, neural ones. The schism between the two strategies, and the
attendant debate over their relative superiority, has gone on almost as long as AI and cognitive
modeling have been studied [12]. Neural systems currently excel at problems that make use of
strengths like pattern matching, incremental learning, and processing noisy data [13]. However,
they are less successful in domains which require high-level executive behaviors like representing
the goals of a task or rules of an environment [11]. Conversely, symbolic systems can easily bind
variables, create complex data structures, and perform global computations, allowing them to
better perform high-level cognitive tasks like planning and reasoning.

Producing neural systems which are capable of higher-level cognitive behaviors has received
increasing levels of interest from the AI community, but it remains an elusive goal [18]. It does
not seem convincing that the neural paradigm is inherently less well-suited to carrying out higher
cognitive functions. After all, biological neural networks are perfectly capable of doing so. Indeed
these biological neural systems provide the only example we have of cognition. For example,
a person can play a novel card game with little difficulty after having the rules presented to
them briefly, and those rules can be encoded in a top-down AI system in a straightforward way.
In contrast current artificial neural systems may need to witness thousands of iterations of the
game before being able to play on its own.

What accounts for the divergent performances of neural and symbolic systems on executive
cognition tasks? And how can this divergence be reconciled with the ability of naturally-occurring
neural networks to formulate plans, select actions, shift attention, and carry out numerous other
high-level cognitive control behaviors?

Researchers have been increasingly interested in examining this issue recently in attempts to
understand the brain’s computation from the bottom-up. Of particular interest here has been
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the study of “cognitive control,” an umbrella term for executive cognitive systems that manage
other cognitive processes, such as working memory, attention, and inhibition. Several pioneering
neural models explicitly incorporate aspects of cognitive control, such as for managing working
memory [14].

However, many such neural models are hard-wired for the particular task for which they are
designed [23], connection strengths are often set by hand without a learning procedure, and local
conjunctive encodings are often used [6], specifying the exact sets of possible inputs and outputs
and making adaptation to other situations, contexts or environments tricky. This specialization
can make neural network models of cognitive control difficult to build because each model
requires not only parameter tuning and other human supervision, but often construction from
the ground up [7]. Even small changes in the task specifications can require large modifications
to the architecture. For instance, Dehaene and Changeux’s model for solving the Towers of
London problem [4], while capable of an impressive amount of planning for a neural network,
is incapable of solving the very similar Towers of Hanoi problem, or even of solving Towers of
London using a method other than the greedy, depth-first search it has been constructed to
execute.

One notable prior neural network model which does generalize to multiple tasks without
making architectural changes is that of Rougier et al. [17]. These tasks revolve around identifying
the single currently relevant feature (e.g., WCST). Rougier et al. frame their tasks as pattern
classification problems, using iterative training to learn input-output mappings. In contrast,
the system presented here uses one-shot learning, and frames each task as a procedure to be
executed.

2 GALIS: A conceptual framework for modeling cortical
cognitive control

The development of a general purpose, adaptive neural system, building on the successes of past
specific implementations of cognitive control mechanisms, would be useful for a broad range
of applications and in the study of our own cognition. Towards that end, we describe here
an approach or philosophy for building models of cognitive control which we call GALIS, for
“Gated Attractors Learning Instruction Sequences.” GALIS is intended to be a general-purpose,
adaptive neurocomputational architecture that learns how to perform tasks, including tasks
that themselves involve learning, within which models for specific tasks can be instantiated. A
GALIS model’s behavior is determined in large part by the patterns that have been stored in its
instruction memory. While it remains entirely a neurocomputational system, this introduces a
similarity to the traditional von Neumann architecture computer.

GALIS is inspired by the organization and functionality of the cerebral cortex, although it is
not intended to be a faithful neuroanatomical model of brain circuitry. We take inspiration from
the organization of the cerebral cortex to create a general computational framework that can be
used effectively to create a broad range of neural architectures for specific tasks. By developing
methods for cognitive control which are not task or domain specific we hope to help bridge the
gaps between artificial neural systems and both biological neural systems and artificial symbolic
systems. We adopt three main hypotheses about how the cerebral cortex implements cognitive
control.

First, the cerebral cortex is organized as a distributed network of interacting cortical
regions [2, 22]. All aspects of working memory contents, both static information that captures
task-specific details and dynamic procedures for performing a task, are stored within a network
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of model regions. Model cortical regions must learn not only the facts about a specific instance
of a task, but also the procedure or “software” that is needed to perform that task. This focus
on making behavior largely dependent on patterns stored in the network’s memory, rather than
on the network’s structure or “hardware,” is a break from previous models of cognitive control,
and is intended to make GALIS models more generalizable: their behavior can be changed by
adjusting which sequences are learned rather than by adjusting the structure of the model itself.

Second, each region in the cortical network can usefully be viewed as an attractor neural
network, i.e., as a dynamical system whose activity is continuously being driven towards certain
preferred states. Attractor networks have been used previously in cognitive control models [5, 10],
but usually they are limited to dealing with only fixed-point attractors. However, the attractors
in GALIS are designed to enable switching between attractor states in ordered sequences.
This is critical if procedural information is to be accommodated in memory: procedures by
their very nature must be temporally extended. Various techniques have been used to add
similar dynamism to attractor nets [3, 9, 28] but GALIS uses temporally asymmetric learning of
intra-regional connection weights [24, 25].

Third, each cortical region can not only exchange information with other cortical regions
in the form of activity patterns, but can also gate other regions’ functions and interactions.
By gating here we mean that a cortical region can turn on/off functions in other regions, or
open/close the flow of information between other regions. There have been numerous theories
posited for the biological structure underlying cortical gating [19, 21], but GALIS is agnostic
about the particulars of gating in biological systems. Rather, we take the existence of some such
mechanism as a given and implement them as direct gating interactions between model cortical
regions and their connecting pathways.

3 n-Back Model

To demonstrate the GALIS approach, we next give an example model capable of performing
the n-Back working memory task for n ∈ {1, 2, 3, 4, 5}. The model is able to perform without
re-configuration or re-training the network when the value of n changes during the task. For a
more detailed treatment, please refer to Sylvester et al. [26].

The n-Back task is of significant interest in cognitive psychology [15]. In it, the participant is
presented with a stream of stimuli and must identify which of these is the same as the stimulus
presented n steps earlier. For example, in a 3-back task the bold letters in the following sequence
would be considered matches: VHZVXOLIOSAJXAO.

3.1 Architecture

The top-level architecture for the GALIS n-Back model is shown in Figure 1. It consists of
several interacting layers: the visual input layer, the n-input layer, the output nodes, the memory
layer, the compare module, the context module, and the control module.

There are two input layers to the model. The visual input layer is set externally to represent
the visual stimulus being presented during the current time step. The n-input layer is used to
specify the current value of n so that the model knows which task version it is supposed to be
performing. Which version is executed at any time depends only on changing this input.

A pair of nodes are used for outputting match and no-match. Which one is activated is a
function of the output of the compare module, which compares the visual input layer to the
current state of the working memory.
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Figure 1: The GALIS model for the n-Back task. Thin, solid arrows denote one-to-one
connections. The working memory layer is fully recurrently connected (broad arrow). Dotted
lines are the outputs of the control module.

The context module allows the control module to keep track of what stage of processing it is
in, fulfilling a similar but much simplified role as the Program Counter in a CPU. Processing
each stimulus occurs in two stages: first the new stimulus is added to the working memory,
then the working memory is searched to determine if that new stimulus is a match with the
n-Back item. The control module both influences and is influenced by the context module,
which enables it to set its own short-term sub-goals.

The working memory layer is a discrete Hopfield network forming an auto-associative memory.
Like biological working memories, the GALIS working memory layer has limited capacity, high
plasticity via one-shot learning, and close integration with executive systems. The working
memory layer has been modified from standard Hopfield networks to allow it to recall patterns
in a specified sequential order using dynamic thresholds, weight decay [16, 28] and temporally
asymmetric weights [24, 25]. In addition to adding patterns to working memory, the network
also has the capability to “unlearn” or partially “forget” stored patterns using an anti-Hebbian
learning rule [8]. One could think of the unlearning procedure as the addition of an “erase”
command to complement the typical “load” and “store” functions already present.

A key component is the control module, which is responsible for directing the operation of
the rest of the system. Its outputs drive the six gates which govern flow of activity throughout
the rest of the model. The control module’s core is a second discrete Hopfield attractor network,
called the “instruction sequence memory” (ISM). Like the working memory, the ISM stores
sequences using temporally asymmetric weights. But where the working memory module stores
visual stimuli, the control module stores the actions necessary for completing a task. Each
action consists of opening and closing different gates to different degrees in order to influence
the actions of the rest of the network. Both the working memory and ISM are based on the
same weight update, input and state update rules. Reusing the same principles for both data
and instruction storage makes GALIS particularly parsimonious. However, the ISM has been
modified to store multiple sequences concurrently. Each sequence corresponds to a particular
set of actions the model may need to perform during a task. For instance, one such sequence of
actions for n-Back adds a new stimulus to working memory.

The gates which the control module adjusts modulates the flow of activity between layers
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and regulates the weight updates in the working memory. These gates are: (i ) the Memory
Input gate, between the visual input layer and working memory layer which biases the memory’s
current state towards or away from the current stimulus; (ii ) the Output gate which controls
the flow of activity from the compare layer to the output nodes; (iii ) the Memory Training and
(iv ) Memory Unlearning gates which control when the working memory learns and removes
patterns, respectively, (v ) the Context gate which regulates the state of the context module;
and (vi ) the Encoder Update gate which governs the inputs to the control module, so that it
can control whether it begins a new action sequence or finish the sequence currently in progress.
The effect of gates is multiplicative, such that the downstream activity of a gated connection is
a product of its incoming activity and its current state. Gates are real-valued allowing them
to amplify, damp, or inhibit their inputs, making them more nuanced than simply “open” and
“closed.”

3.2 Operation

Each run of the model is divided into two phases: Controller Initialization and Task Execution.
In the former the control module learns the instruction sequences necessary to perform the
task using one-shot Hebbian learning. This training of the control module occurs only once,
after which its weights remain fixed. In contrast, the working memory layer begins in a blank,
untrained state, and has its weights updated multiple times as the trial progresses through the
Task Execution phase. While the associations learned by the control module are determined
by the human modeler, the learning that the working memory engages in during the task is
entirely guided by the model itself, with the model determining when to add or remove patterns
from memory.

The Controller Initialization phase occurs before the model is presented with any inputs or
produces any outputs. For the n-Back task six instruction sequences are learned: one which
adds a new stimulus to working memory as well as one each for comparing the current input
to the 1st, 2nd, . . . , 5th item in memory. The network thus learns to perform the task for
n ∈ {1, 2, 3, 4, 5}. Training is identical no matter which versions the model performs during the
Task Execution phase. As a result, the model is capable of switching between versions of n-Back
during trials, as dictated solely by its inputs and without any other adjustments being made.

During each step of processing in the Task Execution phase the model goes through the
following operations directed by the control module. First, if either output node was activated in
the previous time step a new stimulus will be presented, otherwise the inputs from the previous
step are retained. Second, the state of the working memory is updated. Third, the output of the
compare module is updated to reflect the new states of the working memory and visual input
layers. Finally, the state of the context module is updated.

4 Results

After the GALIS n-Back model was trained to perform n-Back tasks of varying lengths (n=1
through n=5), it was presented with sequences of 30 + n stimuli. The first n are “preparatory
stimuli,” and the response to these is ignored, as they are for human subjects. For each trial,
ten stimuli would be generated, and the sequence of inputs would then be drawn from these ten.
(Using a small set of possible stimuli is typical of human n-Back experiments.) One third of the
stimuli following the preparatory period were matches. No “lures” (stimuli which match those
one position offset from the target) were used, as was the case for the human subjects whose
performance we were attempting to match, which was drawn from Watter et al. [27].
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Figure 2: (a) Accuracy for human subjects and the computational model for all five versions of
n-Back. (b) Correlation between human response time per stimulus and the average number of
steps the model takes per stimulus.

In Figure 2, the model’s average performance across all 30 stimuli over 250 trials is given and
is also compared to that of human subjects on 1-, 2- and 3-back tasks. Two different variations
of the model were tested. Model V used variable working memory decay rates (the larger n was,
the smaller the decay rate used, so that for larger n values the working memory attempted to
store more stimuli), while Model C used the same decay rate for all values of n.

Both models show that as n increased response accuracy decreased monotonically. For
n=1,2,3 both models’ results are not significantly different than human performance (p = .05);
however the overall fit for Model V was closer. This is possible because different decay rates
are most suitable for recalling sequences of different lengths [16, 24]. A lower decay rate allows
longer sequences of visual stimuli to be successfully stored without deterioratiation. A higher
decay rate reduces interference from older items, improving the ability to recall shorter sequences.
It has previously been hypothesized that humans may adjust a working memory decay rate in
order to control the length of sequences they are attempting to remember [1, 28].

Figure 2 does not show human results for n=4 and n=5 because they are not reported in
Watter et al. [27]. Human subjects typically find 4- and 5-back to be extremely challenging [15].
Nonetheless, the GALIS n-Back model is trained to perform 4- and 5-back, and the simulation
results are shown as model predictions. If humans really can adjust working memory decay
to adapt to longer sequences, Model V’s performance leads us to predict that subjects taking
Watter’s version of n-Back for n=4 and n=5 would see their performance drop off linearly to
approximately 76.3% and 70.7%, respectively. Higher values of decay have more of an impact on
larger values of n, since decay on patterns in working memory compounds each time a new item
is learned. Keeping decay constant in Model C therefore disproportionally impacts performance
for n=4,5, reducing Model C’s accuracy on 5-back to no better than a biased coin toss. If
humans cannot adjust working memory decay to suit the task then we would predict that their
accuracy on 4-back to fall to 72.7%, and for them to be unable to perform 5-back at better than
random accuracy.

In addition to matching human accuracy levels, the GALIS n-Back model also matches
response times. The correlation between human response time and the number of time steps
the model needed correlates well with the human response time data (R2 = 0.9888).

Experiments were also run in which the value presented to the n-input layer changed mid-trial.
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Input sequences were constructed in the same way as described at the beginning of this section,
but the value of n changed between the 15th and 16th stimuli. Other than varying the n input
no changes or adjustments were made to the model. After a short transition period lasting
several stimuli, the model is capable of performing the newly selected version of the task as if it
had been doing it all along. There is no long-lasting penalty from task-switching mid-trial, and
the disruption in performance persists for no longer than n stimuli.

If the task is shifted to an easier version (i.e., n decreases), performance will climb monotoni-
cally until reaching the expected, baseline accuracy level of the new task variant. If the task is
shifted to a harder version (i.e., n increases), the performance will temporarily drop below the
expected level before climbing back to and settling at it. We hypothesize that this unexpected
pattern has to do with an imbalance between interference and decay in the working memory
when it is unexpectedly called on to begin recalling longer sequences, and note that it offers a
testable prediction that could be critically evaluated with human subjects.

5 Discussion

The work described here offers further evidence that neural systems are capable of supporting the
types of executive functioning typically associated with symbolic AI systems. Parameters did not
need to be re-tuned in order to match human accuracy and response times on 1-, 2-, and 3-back.
Additionally, testable predictions were produced regarding both 4- and 5-back performance and
responses to intra-sequence changes to n. More significantly, this was accomplished in a novel
way, by basing the behavior of model on both its structure and the content it had learned.

On the one hand, neither symbolic production rules nor explicit variable bindings were
required to produce this human-like cognitive control behavior. On the other, GALIS does
not need to hew too closely to physiological detail; for example no complex models of spiking
neurons are required. This indicates that it may be possible to construct systems capable of
higher-level cognitive functioning which neither completely eschew the basis of our own cognitive
machinery nor need to mimic it too closely.

Though GALIS attractor networks operate in high-dimensional, continuous space, each
attractor within that space can be seen as a discrete object [20]. As a result, gated attractor
networks offer a balance between the continuous nature of neural networks and the discrete
nature of symbolic systems, narrowing the gap between what is possible with neurocomputational
systems and symbolic ones, providing the potential to produce symbolic-like behaviors using
sub-symbolic systems.

The methods employed here also make it possible to “program” a neural network to a novel
extent. This creates a second point of potential crossover between symbolic and sub-symbolic
systems. It is true that at this point these neural programs had to be crafted by the modelers.
Nevertheless, we feel that the approach of basing behavior on stored patterns is a valuable
stepping-stone towards more autonomous systems in the same way that the Jacquard loom was
a precursor to modern computing machinery. If behavior can be stored in memory then it can
be more easily modified than if it was built into the architecture. And if it can be modified,
we believe it can be generated autonomously during learning. In other words, GALIS moves
away from systems whose behavior is a function of their construction and towards ones whose
behavior is based on instruction.
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