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PURPOSE

To explore whether machine learning algorithms can be used to predict who will

benefit the most from working memory training.

A recent TTO 3501 training study showed that peoples performance on a variety of working

memory and language tasks can be improved by administration of a working memory task

battery. This battery targets attentional and cognitive control mechanisms in the brain,

thereby improving peoples ability to maintain and manipulate the information required for

complex cognitive performance.

Our goal was to use machine learning methods to identify which, if any, individual charac-

teristics of the trainees best predict who will show the most improvement. Prior to testing,

all participants took an extensive demographic questionnaire. That information, along with

pre-test scores prior to testing, was used as input to our models. Overall improvement as

a result of the training was used as output, and several different learning algorithms were

used to identify any relationships between these variables.
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CONCLUSION

Overall, we were unable to identify any individual characteristics, or groups of

characteristics, that accurately predict who will benefit the most from working

memory training. However, it does appear that those who score lowest on pre-

training working memory tasks are those who demonstrate the most overall

improvement for those tasks.

Unfortunately, several factors made it impossible to identify any individual characteristics

which predict working memory improvement following training. One was the small size

of the dataset, while another was the widespread improvement of most subjects, including

control subjects. Still, perhaps the most important factor was the weak correlation between

most pre-test scores and later performance. In other words, there appeared to be little

relationship between how well someone performed on the tasks prior to training, and how

well they did on other tasks afterwards. The most notable exception was the observation

that subjects who performed poorly on a particular task during pre-training, tended to

show the most improvement for that particular task.

RELEVANCE

While our computational models did not find any characteristics which predicted

who should benefit most from cognitive training, it is important to note that the

approach remains potentially useful, and should be employed if future training

provides larger data sets.

Although our lack of useable findings was disappointing, this research was still useful in

that we now have an established approach for identifying factors predicting successful post-

training performance. We have identified over ten machine learning methods for predicting

working memory improvement based on demographic and pre-testing measures, any of which

could be applied to future datasets. We have also developed useful methods for assessing

performance of these machine learning techniques.
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Abstract

A recent experimental study has established that working memory training can improve a

person’s performance on cognitive tasks. This current report examines whether machine

learning algorithms can be used to predict which subjects will improve. Multiple factors

are used to make predictions, including both demographic data as well as performance

on pre-training assessment tasks. Multiple machine learning algorithms of various types

are assessed. In addition, two feature selection techniques are used to judge which

factors are most useful in predicting improvement. The machine learning algorithms

we examined were only marginally effective in predicting improvement. This was most

likely due to the small size and lack of strong correlation between features and outcomes

in the data set. Advanced algorithms rarely performed better than than simple guessing

based on prior probabilities when considering the accuracy rate of predictions, though

when judged on the basis of specificity and sensitivity they perform better. Ensemble

algorithms did display some promise on this task, often out-performing other methods.

1. Motivation

A recent study at CASL demonstrated that some people improve their performance on

a number of cognitive tasks after receiving working memory training when compared to

control subject who do not receive the training [Atkins et al., Submitted; Bunting et al.,
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2010]. What is as of yet unclear is why some subjects improve while others do not. Here

we attempt to find a computational method for predicting a priori who will improve their

performance on various cognitive tasks if they receive training. It could be quite valuable to

predict who will benefit from training, since such training can be a costly undertaking, in

both time and effort.

This study examines three separate questions. First, can we predict who will benefit from

training? Second, which machine learning algorithms are best suited for this task? Finally,

which characteristics of subjects are most useful in making this prediction?

2. Methods

The data for this study is drawn from the findings of TTO 3501. Specifically, we considered

all subjects who participated in the working memory study training regime. Information

about these subjects, including personal characteristics as well as their performance on all

three batteries of testing (pre-training, post-training, and post-delay) were used to generate

data sets for the various machine learning algorithms.

Input features of these data sets consisted of demographic data such as age, sex, and

educational attainment, as well as the scores subjects received on pre-training assessments

such as Listening Span and Cloze tasks. Subjects’ performances were normalized according

to their z-score. Multiple data sets were generated, each with the same input features, but

differing in the class/output variable to be predicted.

Multiple tasks were used to generate different class variables to be predicted. In each case,

the actual variable was binary: true if the subject improved their score after training on

that task, and false if they did not. Additionally, both the post-training and post-delay

scores were used to generate different data sets. Each task resulted in two data sets, one for

whether there was pre-training to post-training improvement, the other for pre-training to

post-delay improvement.
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Furthermore, we used two definitions for what it meant to improve on a task. In the first

phase of the study, the class variable was true if the subject’s score went up at all between the

former and latter administrations of the test. In the second phase, the subject’s score had to

change by at least as much as the average change among the control subjects. For example,

the mean change in Rotation span scores between the first and second test administration

for the untrained, control subjects was 1.67. A trained subject therefore had to improve

their score by at least 1.67 for them to be put in the “improved” class; a decrease or an

increase of less than 1.67 would be considered “unimproved.”

Several machine learning methods were used to make predictions. The algorithms used were:

1. Näıve Bayes, a statistical classifier which assumes conditional independence

among feature variables [John and Langley, 1995].

2. Bayesian Network, another statistical classifier that allows for conditional

dependencies between variables [Pearl, 1986].

3. Support Vector Machine, a classifier which does a non-linear transformation

of the feature space to try to achieve the maximum possible linear separability

between classes [Platt, 1998].

4. IBk, an instance-based or nearest-neighbor classifier [Aha and Kibler, 1991].

(Our classifier used the k = 5 nearest neighbors.)

5. C4.5, a popular decision tree algorithm [Quinlan, 1993].

6. Ripper, an algorithm for induction of propositional logic rules [Cohen, 1995].

7. Multilayer Perceptron, an artificial neural network using error back propaga-

tion learning [Rumelhart et al., 1986].
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8. Bagging, an ensemble or meta-classifier, which aggregates the predictions

of many simple decision trees each using different features into a final

prediction [Breiman, 1996].

9. AdaBoost, another decision tree ensemble, with each tree being trained

on different subsets of the data set, weighted towards harder to classify

instances [Freund and Schapire, 1996].

10. Voting, a method for combing predictions of multiple base classifiers, which

can be trained with different algorithms [Kuncheva, 2004]. We used two

methods of combining predictions: simple majority voting, and a vote

weighted by the confidence of each sub-classifier.

11. Stacking, a method for combining predictions of several classifiers, possible

of different types, by training a meta-classifier using the predictions of the

underlying models as features [Wolpert, 1992]. We use both C4.5 and Näıve

Bayes as the meta-classifier.

For both voting and stacking, the base classifiers consisted of one instance of each of the

first nine methods listed above.

In addition to the above methods, we report the performance of the “ZeroR” classifier for

comparison purposes only. ZeroR predicts that all instances will be in whichever class

formed the majority of the training set.

Classifier success was judged by several different standards, principally the accuracy rate of

predictions. In addition, sensitivity and specificity were assessed, because false positive and

false negatives may have different impacts when predicting whether a person would benefit

from training. Predicting a subject will benefit from training when they won’t might be

considered to be costlier, for instance, because that person will be needlessly put through a
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lengthy training process. These values were calculated as:

specificity =
# true negatives

# true negatives + # false positives

sensitivity =
# true positives

# true positives + # false negatives

The other reason to consider sensitivity and specificity has to do with the class imbalances

in the data sets. Many of the data sets were imbalanced, that is, they had significantly

more samples in one class than the other. In such cases it becomes possible to produce high

accuracy scores simply by always predicting the majority class for every test case. While

accuracy may be high with such a strategy, sensitivity and specificity suffer.

All the results presented below were produced using ten fold cross validation, repeated ten

times with different decile partitioning, for each data set.

To examine which features had the most predictive power, two measures were used. The

first is the information gain ratio [Mantaras, 1991], a measure of how much a feature can

reduce the entropy of a decision. The second is the CFS Subset algorithm [Hall, 1998], which

attempts to select a subset of attributes that are highly correlated with the class variable

while being uncorrelated with each other.

3. Results

3.1. Phase One

Table 1 shows the accuracy rates for each classifier when attempting to predict improvement

on the post-training assessment. Table 2 shows the same classifiers accuracy when predicting

post-delay improvement. Unsurprisingly, no classifier performed better on the post-delay

data sets than the post-training ones.
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Based on the findings in Bunting et al. [2010], we focused analysis on the Listening Span,

O-Span and Symmetry Span data sets, since these are the tasks on which subjects showed

the most benefit from training. The methods which showed the best accuracy on these data

sets are Boosting, Bagging, SVM, and Voting. Of these, only the SVM is not an ensemble

method. Note that while the accuracy of these classifiers is high the ZeroR classifier performs

almost as well. This is possible because the data sets being used were small (44–45 data

points) and imbalanced (class ratios were as high as 86%). This results in a data set with

very few instances of one class on which to train and test, and as a result it is often nearly

ignored by the learning algorithms.

ZeroR does not manage to match the other algorithms performance when considering the

sensitivity and specificity of the classifiers (Tables 3–6). ZeroR always scores very well on one

of these measures but very poorly on the other, depending on which class was more common

in the training set. This is because always predicting the same outcome will be guaranteed,

eliminating either false positives or false negatives, but doing so results in greatly increasing

the other error type.

It is in specificity that classifiers can be seen differentiating themselves from a strategy of

guessing. Starting with the methods already identified above as having high accuracy, the

weighted average voting classifier attains the consistently highest specificities.

3.2. Phase Two

In attempts to equalize the class balance, we recreated these data sets, but required that the

trained subjects’ scores improve by at least the amount that the untrained, control subjects

did. This resulted in much more balanced data on which to train, with the majority class

being no higher than 62% of the data set.

Additionally, based on the findings of phase one, we eliminated the AFOQTR, Cloze and

Verbal tasks, and added Rotation Span. We also dropped the Stacking methods from
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consideration, as they are computationally expensive and showed only average performance

on the previous phase.

Accuracy on both post-training and post-delay predictions can be seen in Tables 7 & 8.

Interestingly, accuracy is now no better on the post-training data sets than the post-delay

ones. (Note that while the accuracies are actually somewhat higher for the post-delay data

sets, the accuracy of ZeroR is also higher compared to the post-training data sets, indicating

that it is a somewhat “easier” prediction due to different class ratios.)

Rotation span appears particularly difficult to predict because it is significantly smaller than

the other data sets. The other data sets had 44 or 45 data points, while rotation had only

36. More subjects had to be discarded because they did not have scores on the second and

third administrations of the Rotation span task.

Of all five tasks, Decipher seems to be the one where the classifiers are most successful at

out-performing ZeroR, followed by Operation Span. On Decipher, the algorithms which

perform best are Ripper, Bagging, BayesNet, and Majority Voting. Bagging and voting are

both ensemble methods that displayed good performance in the first phase as well.

Like the first phase results, the trained classifiers outperformed ZeroR’s guessing strategy

when judged by specificity (see Tables 11 & 12). While the first phase specificities were

higher than ZeroR’s, they were still low for many of the data sets. Classifiers recorded higher

specificities in the second phase across the board.

Table 13 displays the four features with the highest information gain ratios for each of the

ten data sets in the second phase of the study. For Operation Span and Decipher tasks, the

single most informative features were the subject’s score on the first administration of the

task. These scores were negatively correlated with improvement on the tasks, for the most

part. This means that the best way to predict who would improve would be to select all

those with low initial scores, perhaps because they have the most “room for improvement.”
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Interestingly, a subject’s first Cloze score appears to be a better predictor of their improvement

on Listening Span than does their first Listening Span score. Similarly, Operation Span is a

better predictor of Symmetry Span improvement than is the first Symmetry Span test. This

suggests that if any of the pre-tests warrant further study for predictive ability, it would be

Cloze and Operation Span.

It should also be noted that while these are the four features with the highest information

gain ratios, these ratios are still extremely low, with even the highest ranked feature often

having an information gain ratio under 0.1. This indicates that even these features offer

only a weak ability to predict the class variable.

Table 14 shows the features selected by the CFS Subset algorithm. Note that this algorithm

does not rank the features within the subset it selects, so the order in which the features are

given is not an indication of their relative value, unlike in Table 13. The overall pattern is

similar to that seen when using Information Gain Ratio. We see again that a subject’s score

on the first administration of a task is a useful predictor of their improvement, and that

Operating Span and Cloze results are useful for predicting improvement on other tasks.

4. Discussion

The goal of this study was to investigate ways to predict a priori who would benefit from

working memory training. The ability to preselect candidates who are more likely to show

increased improvement from the training regime could potentially save a great deal of time

and effort.

In order to identify good candidates for training, various machine learning algorithms were

tested on data sets derived from demographic data about subjects as well as subjects’

performance on a battery of pre-training cognitive tasks. These algorithms were of several

basic types, including statistical, rule-inducing, instance-based, decision trees, and both

homogenous and heterogenous ensembles. In addition, two algorithms for feature selection
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were applied to judge which aspects of the subjects would be most useful for making

predictions, independently of the actual learning algorithm that might be used.

We found that predicting trained subjects’ improvement to be a very difficult task. One of

the principle reasons for this is the small sample size of the data sets. This data was never

intended to be used with machine learning methods as we have done here. Most machine

learning algorithms are designed to work with at least several hundred training samples, not

the approximately forty training samples given. The problem of small data sets was also

exacerbated by the uneven class ratios in the first phase of the study, as the skewed data

sets offered as few as six data points in the “unimproved” class on which to train. This

made generalization very difficult.

Small data set sizes also made judgements about statistical significance problematic. A

ten fold cross validation with 44 data points means there will be 40 training and four test

instances. An algorithm with a mean accuracy of 75% could easily score two, three or four

out of four on different test sets, leading to very large standard deviations in the accuracy,

causing most results to seem statistically insignificant.

Another difficulty in making predictions from this data was that there were only very weak

correlations between feature values and the class variables being predicted, if there was any

correlation at all. Most features did not contribute to the predictive ability of the classifiers.

In particular, most of the scores on the pre-training tasks did not correlate with subsequent

improvements in other tasks, except for Operating Span and Cloze, as mentioned earlier. In

addition there was a notable negative correlation between the pre-training score and later

improvements on the same task, because the lower the initial score was the more opportunity

a subject would have to increase it. Even this result is difficult to interpret, as it may be due

to simple regression artifact. In other words, given a random fluctuation of scores (i.e., no

true relationship between pre- and post-score measures), one would predict below average

scores to increase and above average scores to decrease, due to normal regression to the
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mean. In the end, it may therefore be difficult for any algorithm to discover a pattern in the

data because no clear patterns may exist.

Because of the low predictive capacity of many of the variables considered, it would be

prudent to begin any further investigations with a new data set, such as one drawn from the

DLAB project, with an emphasis on feature selection. Many of the algorithms considered

here, in particular the instance-based and statistical ones, would benefit from more rigorous

culling of features.

It would also be useful, moving forward, to consider the varying impact of Type I and

Type II errors from the outset when analyzing performance. For instance, considering the

receiver operating characteristic curves of the different classifiers would give a move complete

picture of the classifier performance than do scalars like the sensitivity and specificity alone.

Some preliminary analysis of the area under the ROC curves suggests that the classifiers

detailed above do considerable better than ZeroR, particularly on Decipher and Operation

Span, even with the limitations of the data sets presented here.
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Table 13. Top four features by Information Gain Ratio

Data set Highest I.G. Ratio 2nd highest 3rd highest 4th highest

Decipher, post-training Decipher1score English1stLang English2ndLang Sex
Decipher, post-delay Decipher1score English1stLang English2ndLang Sex

Listen, post-training English1stOr2nd Migraine English2ndLang Sex
Listen, post-delay Cloze1score Education English1stOr2nd English1stLang

O-Span, post-training Ospan1score LangNumber English1stOr2nd Migraine
O-Span, post-delay Ospan1score English1stOr2nd Education English2ndLang

Rotation, post-training English1stOr2nd Sex English1stLang Education
Rotation, post-delay Migraine Sex Education English1stOr2nd

Symmetry, post-training Migraine English1stOr2nd Education Sex
Symmetry, post-delay Ospan1score English1stOr2nd Migraine Education

Table 14. Unordered sets of features selected by the CFS Subset algorithm

Data set Features

Decipher, post-training { English1stLang, Decipher1score }
Decipher, post-delay { English1stLang, Decipher1score, Symmetry1score }

Listen, post-training { Sex, English1stOr2nd }
Listen, post-delay { Cloze1score }

O-Span, post-training { Education, Migraine, NumberLanguagesSpoken, Ospan1score }
O-Span, post-delay { Education, English1stOr2nd, Ospan1score }

Rotation, post-training { English1stOr2nd }
Rotation, post-delay { Sex, Education, Migraine }

Symmetry, post-training { Sex, Migraine }
Symmetry, post-delay { Sex, English1stOr2nd, Ospan1score }
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