# Cognitive Control as a Gated Cortical Network

Jared Sylvester, Jim Reggia and Scott Weems Depts. of Computer Science & Psychology, UMIACS, CASL University of Maryland, College Park, MD



6 Nov 2011



# Goal

- Generalizable model of cognitive control
  Learned, not hard-wired into architecture
- Base behavior on memory contents
- Two type of memory/learning:
  - A Memory of perceptual stimuli
  - Memory of task procedures
- Biological inspiration of our approach:
  - Network of regions, recurrent attractor nets, gating, distributed representations, Hebbian learning

#### **Attractor Net Memories**



time

$$w_{ij}^{t} = w_{ij}^{t-1} + \frac{1}{N}a_{i}^{t}a_{j}^{t}(1 - \delta_{ij})$$

- Stored patterns are attractors
  - ♦ Form auto-associative memory
- But fixed-point attractors
  - Network gets "stuck" in attractor basin

#### Sequentially Visit Attractor States



#### time

- Dynamic thresholds
  - Increase when node's state remains unchanged
  - Harder for node to stay in the same state

#### For details, see:

Reggia, Sylvester, Weems & Bunting. "A simple oscillatory short-term memory model." BICA 2009. Winder, Reggia, Weems & Bunting. "An oscillatory Hebbian network model of short-term memory." *Neural Computation*, 2009.

#### Visiting Attractors in Order



#### time

- Asymmetric weights
  - Correlate activity with other nodes' previous activity

$$v_{ij}^{t} = (1 - k_D)v_{ij}^{t-1} + \frac{1}{N}a_i^{t}a_j^{t-1}$$

Network transitions between attractors in order

#### For details, see:

Sylvester, Reggia, Weems & Bunting. "A temporally asymmetric Hebbian network for sequential working memory." ICCM 2010.

# Adding Cognitive Control

- Modeled Running Memory Span task

   Can match human behavioral results
   But all control was exogenous

  For internal control, use multiple networks

   Network of attractor networks
  - Controlled by gating
  - Learn processing of sequences

### **Control Mechanism**

- Built around attractor networks
- Trained prior to task beginning
- Directs the model by operating gates
- Core is "instruction memory"

### **Control Mechanism**

- Built around attractor networks
- Trained prior to task beginning
- Directs the model by operating gates
- Core is "instruction memory"
  - Stores sequence of steps to do subtasks
  - Multiple sequences stored simultaneously
  - Divided into cue & response sections

Distributed 'cue' pattern

Make tea

| Distributed 'cue' pattern | Distributed 'response' patterns |  |  |
|---------------------------|---------------------------------|--|--|
| Make tea                  | Boil water                      |  |  |
|                           |                                 |  |  |
|                           | Steep tea bag                   |  |  |
|                           |                                 |  |  |
|                           | Add sugar                       |  |  |





$$w_{ij}^{t} = (1 - k_{\text{CTRL}})w_{ij}^{t-1} + \frac{1}{N}a_{i}^{t}a_{j}^{t}(1 - \delta_{ij})$$



$$v_{ij}^t = (1 - k_{\text{CTRL}})v_{ij}^{t-1} + \frac{1}{N}a_i^t a_j^{t-1}$$

14

## Task: "Store/Recognize"

- ◆ Visual stimulus →
- Mode input



- \* "load" add visual stimulus to W.M.; output "complete" when done
- \* "evaluate" is visual stimulus in W.M?

If so, output "present."

If not, add it to W.M. & output "not present"

| Mode input       | load     | load     | evaluate | evaluate    | evaluate    | evaluate |
|------------------|----------|----------|----------|-------------|-------------|----------|
| Visual input     | А        | В        | А        | Х           | Y           | Х        |
| Correct response | complete | complete | present  | not present | not present | present  |



How to add item to working memory

















k<sub>CTRL</sub> is the "decay" rate in the controller's instruction memory layer

Sylvester J, Reggia J, Weems S. Cognitive Control as a Gated Cortical Net, Proc. 2<sup>nd</sup> Int'l Conf. on Biologically-Inspired Cognitive Architectures, IOP Press, 2011, in press.



k<sub>CTRL</sub> is the "decay" rate in the controller's instruction memory layer Negative decay (i.e. gain) performs better

Sylvester J, Reggia J, Weems S. Cognitive Control as a Gated Cortical Net, Proc. 2<sup>nd</sup> Int'l Conf. on Biologically-Inspired Cognitive Architectures, IOP Press, 2011, in press.

## Conclusion

- Modeled proof-of-concept task
- Behavior determined by control module's memory contents
  - I.e., learned, not hard-wired
  - ♦ n-Back model done
- Biologically plausible
  - Network of regions, recurrent attractor nets, gating, distributed representations, Hebbian learning