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Abstract 
       Efforts to study consciousness using computational models over the last two 
decades have received a decidedly mixed reception. Investigators in mainstream 
AI have largely ignored this work, and some members of the philosophy 
community have argued that the whole endeavor is futile. Here we suggest that 
very substantial progress has been made, to the point where the use of 
computational simulations has become an increasingly accepted approach to the 
scientific study of consciousness. However, efforts to create a phenomenally 
conscious machine have been much less successful. We believe that a major 
reason for this is a computational explanatory gap: our inability to 
understand/explain the implementation of high-level cognitive algorithms in terms 
of neurocomputational processing. Contrary to prevailing views, we suggest that 
bridging this gap is not only critical to further progress in the area of machine 
consciousness, but is also an important step towards understanding the hard 
problem. We briefly describe some recent progress that has been made towards 
bridging this gap, and assess whether any computational correlates of 
consciousness have been identified. 
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1 Introduction 

Is it possible to create a conscious machine? While this is not a particularly new question 
(Butler, 1872), it is only over the last two decades that it has motivated sustained work on 
developing computational models of the conscious mind, either via software on computers or 
by using physical robots. Such studies concerning artificial consciousness have been intended 
to advance our understanding of human consciousness and its relationship to cognition, to 
contribute to increased functionality in future AI systems, and (at times) to design a 
phenomenally conscious machine.  

At present, efforts to study artificial consciousness remain highly controversial. 
Researchers in mainstream AI (with a few exceptions) have largely ignored work in this area. 
In philosophy, while a variety of opinions have been expressed, a significant number of these 
would make pursuit of machine consciousness appear to be a rather fruitless task. For 
example, it has been argued that, in general, the objective methods of science cannot shed 
light on consciousness due to its subjective nature (McGinn, 2004), making computational 
investigations a moot point. Further, a broad range of more specific arguments have been 
presented in recent years that phenomenal machine consciousness is simply not possible 
(Bishop, 2009; Bringsjord, 2007; Manzotti, 2012; Schlagel, 1999). Individuals who advocate 
or study the possibilities of machine consciousness have so far not found such arguments 
persuasive (Aleksander, 2005; Koch & Tononi, 2008).  

In a recent review of work in this area, we found that, in contrast to what one might 
expect based on such negative viewpoints, very substantial progress has been made over the 
last twenty years in the field of artificial consciousness (Reggia, 2013). Here we show that by 
distinguishing between simulated correlates of consciousness and instantiated consciousness, 
it is possible to clearly delineate where significant progress is being made, and where the jury 
is still out. We then ask, from a purely computational/engineering viewpoint: What is the 
main practical barrier to further progress on creating phenomenal/instantiated machine 
consciousness? Our answer is that it is a computational explanatory gap: our current lack of 
understanding concerning how high-level cognitive computations can be captured in low-
level neural computations. The significance of this gap is that bridging it may be a critical step 
not only in developing a future conscious machine, but also in addressing the original 
philosophical explanatory gap, in gaining a better understanding of the neural correlates of 
consciousness, and in making advances on the mind-brain problem in general during coming 
years. We argue that bridging this gap has the potential to identify new computational 
correlates of consciousness, i.e., computational processes that are exclusively associated with 
conscious information processing (Cleeremans, 2005). A summary is given of some (small) 
steps that have been taken recently towards bridging the computational explanatory gap.  We 
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find that while a number of candidate correlates have been identified, at present none of these 
can yet fully meet our criteria for being computational correlates of consciousness. 

2 The Nature of Progress in Artificial Consciousness 
To understand the sense in which recent work on artificial consciousness has made 

progress, it is useful to distinguish between two possible objectives for such work: simulation 
of correlates of consciousness versus instantiation of consciousness. Such a distinction 
parallels the distinction often made between information processing aspects of consciousness 
(relates to functionalism, access consciousness (Block, 1995)) and subjective experience 
(phenomenal consciousness). 

With simulated correlates of consciousness, the goal is to capture some aspect of the 
neural/behavioral/cognitive correlates of consciousness in a computational model, much as is 
done in using computers to simulate other natural processes (e.g., models of weather/climate).  
There is nothing particularly mysterious about such work; just as we would not expect that a 
computer used to simulate a thunderstorm would become wet inside, we should not expect 
that a computer used to model some aspect of information processing associated with 
consciousness would become “conscious inside”. There is no claim that phenomenal 
consciousness is actually present in this situation. The results of a simulation are often 
assessed based on the extent to which they correspond to experimentally verified correlates of 
consciousness such as neurophysiological measures, or on the extent to which they may 
contribute increased functionality to future artificial systems. In contrast, with instantiated 
consciousness, the issue is the extent to which an artificial system actually has phenomenal 
consciousness. Does it experience qualia and does it have subjective experiences? This is a 
much more difficult and controversial question. The dichotomy between simulated correlates 
and instantiated consciousness is reminiscent of the distinction between weak AI (behavioral 
criteria) and strong AI (artificial mind) (Seth, 2009).  

Recognizing the difference between simulated correlates of consciousness and 
instantiated machine consciousness clarifies the nature of the progress that has been made in 
artificial consciousness research over the last two decades. From the perspective of simulated 
correlates, neurocomputational modeling has successfully captured a number of 
neurobiological, cognitive and behavioral correlates of conscious information processing as 
machine simulations. To give just a few examples: 

• Neurocomputational models that increase activation of their global workspace when 
performing difficult tasks associated with conscious effort in people (Dehanene et al., 
1998), supporting global workspace theories of consciousness (Baars, 1988, 2002). 

• The unexpected finding that information integration theory (Tononi, 2004) identifies 
gating modules as the most conscious components of a neurocontroller (Gamez, 2010), 
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linking gating mechanisms in cognitive control (Sylvester et al., 2013) to consciousness 
studies. 

• Demonstration that expectation-driven robots can recognize themselves in a mirror 
(Takeno, 2013), essentially passing the well-known mirror test used to identify self-
recognition in animals. 

• Showing that second-order neural networks can match behavioral data from human 
blindsight subjects during post-decision wagering tasks (Pasquali et al., 2010), 
supporting some aspects of higher order thought (HOT) theories of consciousness 
(Carruthers, 2005). 

• Establishing that corollary discharge signals in neurocomputational models of human 
top-down attention control mechanisms can account for some human data involving 
conscious information processing (Taylor et al., 2007). 

Clearly, these and other computational models of correlates of consciousness have provided 
useful information for advancing consciousness studies. As a result, they are increasingly 
being viewed as an acceptable approach to furthering the scientific investigation of 
consciousness, and they may help constrain the large number of theories of consciousness that 
exist (Katz, 2013) by clarifying their implications via modeling. A more detailed discussion of 
these and many other related models is given in (Reggia, 2013). 

The situation is quite different from the perspective of instantiated consciousness. Several 
investigators have claimed to know how to create phenomenally conscious artifacts. To give 
just a few examples: 

• Any system that maintains a correspondence between high-level, symbolically 
represented concepts and low-level data stream entities, and that has a reasoning 
system which makes use of these grounded symbols, has true subjective experiences 
corresponding to qualia and a sense of self-awareness (Kuipers, 2005). 

• Within the framework of global workspace theory, it is possible to develop models that 
show in a transparent fashion plausible neurocomputational bases for phenomenal and 
access consciousness (Raffone and Pantani, 2010). 

• Adaptive resonance theory predicts that all conscious states are resonant states 
(Grossberg, 1999). 

• A system has subjective experience to the extent that it has the capacity to integrate 
information (Tononi, 2004). 

• Computational systems supporting higher order syntactic thoughts experience qualia 
(Rolls, 2007). 
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On the other hand, substantial arguments have also been presented that instantiated machine 
consciousness is simply not possible. A few examples are:  

• Machines cannot be conscious due to their non-organic nature (Schlagel, 1999). 

• Phenomenal machine consciousness would imply panpsychism (Bishop, 2009). 

• The absence of a formal definition of consciousness precludes conscious machines 
(Bringsjord, 2007). 

• Computation is insufficient to underpin consciousness (Manzotti, 2012). 

Our intent here is not to explore in depth the claims and counter-claims above, but only to 
demonstrate that the issue of instantiated machine consciousness remains controversial. 

We believe that, at the present time, no existing computational approach to artificial 
consciousness has yet presented a compelling demonstration or design of instantiated 
consciousness in a machine, or even clear evidence that instantiated machine consciousness 
will eventually be possible. Yet at the same time, no compelling refutation of the possibility 
of a phenomenally conscious machine has been generally accepted. From a history-of-
technology perspective, the current situation resembles discussions concerning the possibility 
of heavier-than-air machine flight during the late 1800s. During this period, as primitive 
efforts were underway to create such machines, very plausible arguments were being made 
about the impossibility of machine flight, and these arguments were only put to rest when the 
Wright brothers’ took wing at Kitty Hawk1. It remains to be seen whether work on artificial 
consciousness will have an analogous outcome. In the mean time, the current situation raises 
the issue of what can be done to resolve whether or not instantiated machine consciousness is 
possible. Resolution of this issue depends on clearly identifying the main barriers to further 
progress that are tractable, or at least amenable to scientific/technical investigation, and then 
hopefully overcoming them.  

3 The Computational Explanatory Gap 
What is the main practical barrier at present to creating instantiated machine 

consciousness? Clearly, there is no shortage of well-known candidates. These include the 
absence of a generally agreed-upon definition of consciousness, our limited understanding of 
its neurobiological correlates, and the “other minds problem” applied to artifacts (how could 
we possibly know whether or not a machine is conscious?). While each of these difficulties is 
substantial, from our computer science/engineering viewpoint none appear to be sufficient to 
account for the lack of progress that has occurred. Significant progress has been made in 
artificial intelligence and artificial life without having generally accepted definitions of either 

                                                           
1 This analogy with flight is limited in that consciousness involves the other-minds problem, unlike flight. The analogy also raises the 

question of whether consciousness is an all-or-nothing property or lies on a continuum in the same way that “flying” does (person jumping, 
flying squirrel, hang gliding, bird flight, sustained plane flight, orbiting satellite, etc.). Our primary point here is just that prior to 1900, many 
informed people argued that heavier-than-air flight was impossible. 
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intelligence or life.  Our current inadequate understanding of the neurobiological basis of 
consciousness does not prevent one from conducting non-biological experimentation via 
computer modeling of existing theories, and the other minds problem has not prevented 
studies of phenomenal consciousness and self-awareness in humans and animals.  

Our central argument here is that there is another less recognized barrier, the 
computational explanatory gap, that we would argue is also of critical importance. We define 
the computational explanatory gap very specifically: It is the current lack of understanding of 
how high-level cognitive information processing can be mapped onto low-level neural 
computations. By “high-level cognitive information processing”, we mean aspects of 
cognition such as goal-directed problem solving, executive decision making, planning, 
language, and metacognition – cognitive processes that are widely accepted to at least in part 
be consciously accessible. By “low-level neural computations”, we mean the kinds of 
computations that can be achieved by networks of artificial neurons like those that are widely 
studied in contemporary computer science, engineering, psychology, and neuroscience. 

The computational explanatory gap can be contrasted with the well-known philosophical 
explanatory gap between a successful functional/computational account of consciousness and 
accounting for the subjective experiences that accompany it (Levine, 1983). While we will 
argue below that the computational explanatory gap is ultimately relevant to the philosophical 
explanatory gap, the former is not a mind-brain issue per se. Rather, it is a gap in our general 
understanding of how computations (algorithms and dynamical states) supporting goal-
directed reasoning and problem solving at a high level of cognitive information processing 
can be mapped into the kinds of computations/algorithms/states that can be supported at the 
low level of neural networks.  In other words, it is a purely computational issue (Figure 1).  

 

The computational explanatory gap is also not an issue specific to computers or even 
computer science. It is a generic issue concerning how one type of computations at a high 
level (serial goal-directed deliberative reasoning algorithms associated with conscious aspects 
of cognition) can be mapped into a fundamentally different type of computations at a low 
level (parallel distributed neural computations and representational states).  It is an 
abstraction independent of the hardware involved, be it the electronic circuits of a computer 
or the neural circuits of the brain. If this abstraction is significant, then one would expect to 

Figure 1: The well-known philosophical (left) 
and less recognized computational (right) gaps. 
Our argument is that the latter may ultimately 
prove to be the more fundamental problem, and 
that focusing on solving it rather than dismissing 
it may be the key to advancing future work on 
instantiated machine consciousness. 
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find that it can be related to past consciousness studies occurring across a broad range of 
disciplines. Is this the case? We suggest in the following that not only is this true for 
disciplines such as philosophy, AI, cognitive psychology, and neuroscience, but also that the 
computational explanatory gap provides a prism through which to potentially unify past work 
relevant to conscious information processing across these disciplines. 

In philosophy, the computational explanatory gap relates to the long-standing discussion 
concerning the “easy problem” of accounting for cognitive information processing versus the 
“hard problem” of explaining subjective experience (Chalmers, 1996). This characterization is 
often qualified by comments that the easy problem is not really viewed as being truly easy to 
solve, but that it is easy to imagine that a solution can be obtained via 
functional/computational approaches, while this is not the case for the hard problem (e.g., 
Block, 1995). Nonetheless, the easy/hard contemporary philosophical distinction tends to 
largely dismiss solving the computational explanatory gap, as it is just part of the easy 
problem. Such a dismissal fails to explain why the computational explanatory gap has proven 
to be largely intractable during more than half a century of efforts (since McCulloch and Pitts 
(1943) first captured propositional-level logical inferences using neural networks). This 
intractability is somewhat mysterious to us, given that the brain somehow readily bridges this 
gap. While the brain’s structure is of course quite complex, it appears unlikely that this 
complexity alone could be the whole explanation, given that mainstream top-down AI has 
been qualitatively more successful in modeling high-level cognition when compared to 
neurocomputational methods. We believe that something more fundamental is being missed 
here. More specifically, we conjecture that, with high probability, the unfortunate terminology 
of the “easy” and “hard” problems that dominates contemporary philosophical thought will 
ultimately turn out to be precisely backwards. In other words, the computational explanatory 
gap is actually the more fundamental and difficult-to-resolve issue, and that once this gap is 
bridged, the philosophical explanatory gap may be found to be much more tractable and fade 
away. We elaborate on this issue in the next section. 

In AI the computational explanatory gap relates to the long-standing debate concerning 
the relative values of top-down (symbolic, numerical, etc.) vs. bottom-up (neural, swarm, etc.) 
approaches to creating machine intelligence (Franklin, 1995). This (in)famous and continuing 
debate has largely missed the point that these two approaches are not so much competing 
alternatives as complementary in what they have each captured about intelligence.  Top-down 
symbolic methods have excelled at modeling high-level cognitive tasks such as goal-directed 
reasoning, metacognition, problem-solving, decision making, “understanding” natural 
language, and planning, but they have been much less successful at pattern recognition and 
low level motor control. In other words, they have been relatively successful in capturing 
aspects of high-level deliberative reasoning and sequential behavioral control that, in a 
person, are associated with conscious, reportable components of cognition. Top down 
methods have also generally been found to be brittle, for example, failing dramatically in the 
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context of noise, minor unexpected events, or small changes to the contents of memory. In 
contrast, bottom-up neurocomputational methods have roughly the opposite strengths and 
weaknesses. They are remarkably effective and robust in learning low-level pattern 
classification (“input”) and low-level control (“output”) tasks, but are not nearly as effective 
for high-level cognitive tasks. For example, neurocomputational systems have proven to be 
very effective in learning procedural knowledge that, in a person, is largely carried out in an 
automatic unconscious manner. Examples include robotic arm movement neurocontrollers 
(Gentili et al., 2011) and steering of an autonomous automobile (Pomerleau, 1993). Compared 
to top-down symbolic AI methods, neurocomputational methods are less brittle in the context 
of external noise or substantial random changes to stored information (random weight 
changes, random loss of simulated neurons, etc.). In short, past work in mainstream symbolic 
AI has so far done relatively little to bridge the computational explanatory gap. The field of 
AI largely remains split into two opposing camps today, in part directly due to the 
computational explanatory gap.  

In cognitive psychology too, the computational explanatory gap becomes evident when 
one considers past efforts to characterize explicitly the properties that distinguish human 
conscious versus unconscious cognitive information processing. For example, human 
conscious information processing has been characterized as being serial, relatively slow, and 
largely restricted to one task at a time (attempting to carry out multiple tasks requiring 
conscious direction simultaneously leads to interference and errors) (Baars, 1988, 2002; 
Dehaene & Naccache, 2001). In contrast, unconscious information processing is parallel, 
relatively fast, and can readily involve more than one task simultaneously with limited 
interference between the tasks. Conscious information processing appears to involve 
widespread “global” brain activity and is internally consistent, while unconscious information 
processing appears to involve more localized activation of brain regions and varies in its 
internal consistency. Conscious information processing is often associated with inner speech 
and is operationally taken to be cognition that is reportable,2 while unconscious information 
processing has neither of these properties.  The key point here is that psychologists explicitly 
trying to characterize the differences between conscious and unconscious information 
processing have implicitly, and perhaps unintentionally, identified the computational 
explanatory gap. The properties they have identified as characterizing unconscious 
information processing – parallel processing, efficient, modular, non-reportable – often match 
reasonably well with those of neural computation (no explanatory gap here). For example, 
being “non-reportable” matches up well with the nature of neurocomputational models where, 
even once a neural network has learned to perform a task very successfully, what that network 
has learned remains largely opaque to outside observers and often requires a major effort to 

                                                           
2 Although such a criterion has substantial limitations, being verbally reportable has long been widely used in 
experimental psychology as a major objective criterion for accepting that a person is conscious of (subjectively 
aware of) an event (Baars, 1988; Dehaene and Naccache, 2001). 
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determine or express symbolically (Huynh and Reggia, 2012). In contrast, the properties 
associated with conscious information processing – serial processing, relatively slow, holistic, 
reportable – are a much better match to symbolic top-down algorithms, and a poor match to 
the characteristics of neural computations. In this context, the unexplained gap between 
conscious cognition and the underlying neural computations that support it is strikingly 
evident.  This is particularly remarkable because identifying the contrasting properties of 
conscious and unconscious aspects of cognition was not an explicit effort to characterize the 
nature of the computational explanatory gap. 

Finally, the computational explanatory gap is also evident in neuroscience, where 
substantial efforts have focused on identifying neural correlates of consciousness (Crick and 
Koch, 1990). Roughly, a neural correlate of consciousness is some minimal neurobiological 
state whose presence is sufficient for the occurrence of a corresponding state of consciousness 
(Chalmers, 2000). This approach to understanding consciousness has identified several 
candidate correlates, such as specific activity patterns in the brain’s electrical activity (e.g., 
widespread 40 hz cortical oscillations), activation of specific neural structures (e.g., thalamic 
intralaminar nuclei), global brain activation, etc. (Metzinger, 2000b). However, in spite of 
such work and an enormous neuroscientific endeavor in general over more than a century, 
there remains a large difference between our understanding of unconscious versus conscious 
information processing in the brain. Consider unconscious information processing, such as the 
automatic motor control mechanisms underlying leg movements during walking, or the 
mechanisms that store information in long-term memory. There is nothing really mysterious 
about these mechanisms today in the sense that we can identify neural circuits and 
computations that plausibly account for these functions: central pattern generators for 
oscillatory movements, Hebbian synaptic changes for associative memory, and so forth. In 
contrast, for high-level cognitive tasks that relate more closely to conscious cognition, such as 
goal-directed problem solving and understanding the meaning of spoken natural language, we 
remain relatively lost in neurocomputational terms. This is in spite of the fact that we know a 
great deal about high-level cognition and the brain today. For example, a lot is currently 
known at the macroscopic level about associating high-level cognitive functions with brain 
regions (pre-frontal cortex “executive” regions, language cortex areas, etc.), and a lot is 
known about the microscopic functionality of neural circuitry in these regions, all the way 
down to the molecular and genetic levels. What remains largely unclear is how to put those 
two types of information together, or in other words, how the brain maps these high-level 
cognitive functions into computations over the low-level neural circuits that are present. Once 
again, we encounter the computational explanatory gap. It remains unclear why this mapping 
from cognitive processes to neural computations is so opaque today given the enormous 
resources that have been poured into understanding these issues. This widely-recognized 
situation has led to a recent call by prominent neuroscientists for a “brain activity map 
initiative” that would develop the technology for bridging this gap (Alivisatos et al., 2013). 
The key point here is that this large gap in our neuroscientific knowledge about how to relate 
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the macroscopic and microscopic levels of information processing to one another is, at least in 
part, also a manifestation of the underlying computational explanatory gap. 

4 Implications of Bridging The Gap  
Why is bridging the computational explanatory gap of critical importance in addressing 

the possibility of instantiated machine consciousness? The reason is that bridging this gap 
would allow us to do something that is currently beyond our reach: directly and cleanly 
compare (i) neurocomputational mechanisms associated with conscious/reportable high-level 
cognitive activities, and (ii) neurocomputational mechanisms associated with lower-level 
unconscious information processing. In effect, it would allow us to determine whether or not 
there are computational correlates of consciousness in the same sense that there are 
neurobiological correlates of consciousness (Cleeremans, 2005). By “computational correlate 
of consciousness”, we mean minimal computational processing mechanisms that are 
specifically associated with conscious aspects of cognition but not with unconscious aspects. 
In the context of the computational explanatory gap, we are specifically interested in 
neurocomputational correlates of consciousness, i.e., computational correlates related to the 
representation, storage, processing, and modification of information that occurs in neural 
networks. Computational correlates of consciousness are a priori distinct from neural 
correlates (Cleeremans, 2005). As noted above, proposed neural correlates have in practice 
included, for example, electrical/metabolic activity patterns, neuroanatomical regions of the 
brain, and biochemical phenomena (Chalmers, 2000) - correlates within the realm of biology 
that are not computational. Neurocomputational correlates are abstractions that may well find 
implementation in the brain and thus can sometimes also be candidates for neural correlates of 
consciousness, but as abstractions they are intended to be independent of the physical 
substrate that implements them (brain, silicon, etc.). 

We believe that if convincing neurocomputational correlates can be identified, many 
individuals concerned with the mind-brain problem would concede that this could at least 
provide insight into the nature of access consciousness. However, our suggestion here is that, 
should neurocomputational correlates of consciousness be discovered, they may also provide 
a direct route to investigating the possibility of instantiated machine consciousness, to 
identifying candidate properties that could serve as objective criteria for the presence/absence 
of phenomenal consciousness in machines and people, and perhaps even to a better 
understanding of the fundamental nature of consciousness. Pursuit of neurocomputational 
correlates of consciousness is a worthy endeavor regardless of the ultimate outcome of such 
work: Even if no differences between the neurocomputational implementation of conscious 
and unconscious cognitive functions can be found, that too would have tremendous 
implications for the modern functionalist viewpoint of the mind-brain problem, for example 
lending support to theories that incorporate some aspect of dualism (e.g., naturalistic dualism 
(Chalmers, 1996)).  
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In other words, we are suggesting that a complete characterization of high-level cognition 
in neurocomputational terms may, along the way, show us how subjective experience arises 
mechanistically. We make this claim in the context of the increasing discussion of cognitive 
phenomenology in philosophy during recent years (reviewed in (Bayne and Montague, 
2011)). Cognitive phenomenology emphasizes that our subjective first-person experience is 
not restricted to just traditional qualia involving perception and affect, but also encompasses 
deliberative thought and high-level cognition, precisely the subject at issue in the 
computational explanatory gap as we have defined it. While the cognitive phenomenology 
viewpoint is controversial (Bayne and Montague, 2011), to the extent that this viewpoint 
holds it indicates that bridging the computational explanatory gap will provide evidence 
directly relevant to a deeper understanding of phenomenal consciousness. 

Further, even if bridging the computational explanatory gap does not provide a full 
mechanistic account of subjective experiences, doing so would still provide more meaningful 
conditions for investigating phenomenal consciousness in an artifact. At the least, we believe 
that bridging the computational explanatory gap could make the hard problem largely fade 
away. A familiar historical analogy with vitalism may help in understanding why this latter 
point is at least plausible.3  The concept of life seemed just as mysterious to many scientists 
during the early 1800’s as the concept of consciousness does to us today. As a result, many 
scientists at the time accepted the philosophical doctrine of vitalism (Garrett, 2006). Vitalists 
attributed some non-physical “vital spirit” or “life force” to living entities that was not 
possessed by inanimate objects. In other words, vitalists believed that the laws of physics and 
chemistry by themselves would never be able to account fully for living processes. In effect, 
there was an apparent philosophical explanatory gap between the property of being alive and 
what could be accounted for mechanistically (i.e., there existed a biological version of the 
“hard problem”), similar to the philosophical explanatory gap concerning consciousness 
today. However, at present we believe that much of the mystery underling this philosophical 
explanatory gap concerning life was really due to a “biological explanatory gap”, i.e., to the 
limited scientific understanding two hundred years ago of how processes associated with 
living entities (metabolism, reproduction, inheritance, etc.) could be implemented by 
biochemical and biophysical mechanisms. Today, even though much is still not understood 
about the physics and chemistry of living processes, and there is still not even a generally 
agreed upon definition of life (Regis, 2008; Wolfram, 2002), vitalism and much of the 
mysteriousness of life that gave rise to it has faded away. This has occurred due to scientific 
advances, including the ability to synthesize organic molecules from inorganic ones, a 
mechanistic understanding of cellular energy metabolism, our knowledge of molecular 

                                                           
3 While some philosophers support the analogy with vitalism that we use here (e.g., Dennett, 1996), others have 
argued that it is inadequate because consciousness involves the mysteries of subjective experience while life 
does not (e.g., Chalmers, 1996, 2007). We believe that the latter view simply reflects the demystification of the 
concept of life that has occurred for contemporary authors due to scientific advances in the biosciences. See 
(Garrett, 2006) for further recent arguments supporting the merit of this analogy. 
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genetics and evolution governed by DNA, and the recognition that self-organization based on 
simple rules can generate high-level behaviors as emergent properties in complex systems 
(Wolfram, 2002). If we replace “life” with “consciousness”, and “biological explanatory gap” 
with “computational explanatory gap”, the analogy is clear. Our expectation, based on this 
historical analogy, is that even if bridging the computational explanatory gap does not fully 
account for the hard problem of subjective experience or produce a crisp definition of 
phenomenal consciousness, it will at least greatly demystify it, and consequently the hard 
problem may fade away. 

5. Identifying Computational Correlates of Consciousness 
If one allows the possibility that the “easy problem”, represented in part by the 

computational explanatory gap, is important and a substantial barrier to instantiated machine 
consciousness, then the immediate research program becomes determining how we can bridge 
this gap. Encouragingly, there has been a substantial and increasing effort over the last two 
decades by researchers who are examining issues that relate to such a program. What 
computational correlates of consciousness has this work proposed? If one surveys past work 
in the area of artificial consciousness (Reggia, 2013), one is left with two immediate 
observations that are relevant to the computational explanatory gap. First, influenced by the 
distinction made in AI between top-down symbolic computations and bottom-up neural 
computations, a number of past models that are explicitly intended to explain consciousness 
are based on the distinction between local symbolic representations versus distributed neural 
representations (Chella, 2007; Kitamura et al, 2000; Sun, 1999, 2002). These hybrid models 
consist of a high-level symbolic module that interacts with one or more lower-level 
neurocomputational modules. Such models start with the claim that symbolic information 
processing per se in the high-level module is the basis of conscious information processing, 
and thus they essentially build in the computational explanatory gap. However, while such 
models implicitly recognize this gap, they do not attempt to provide a solution to it. The 
critical issue raised by the computational explanatory gap is how to replace the symbolic 
modules of such models with neurocomputational implementations. How such replacement 
could be done remains stubbornly mysterious today, and is the essence of the computational 
explanatory gap. 

The second observation that emerges from reviewing past models in artificial 
consciousness is that many of these models can be interpreted as being founded upon specific 
candidates for computational correlates of consciousness, and thus are more directly related to 
addressing the computational explanatory gap. Considering these models, Cleeremans (2005) 
proposed two candidate computational correlates of consciousness a number of years ago: the 
quality of a representation (its stability over time, strength, and distinctiveness), and the extent 
to which a representation is referred to by other representations. The latter hypothesized 
computational correlate has especially received attention in subsequent metacognitive neural 
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network models where higher-order networks interpret lower level networks’ activities 
(Cleeremans et al., 2007; Pasquali et al., 2010), linking work on machine consciousness to a 
rich history of philosophical discussions about higher-order thought (HOT) theories. Other 
studies of artificial consciousness have been founded on hypotheses that can be viewed as 
potential computational correlates of consciousness, including global information processing 
(Dehaene et al., 1998), the ability of a neural architecture to integrate information into a 
unified experience (Gamez, 2010; Tononi, 2004), resonating neural activity (1999), neural 
computations that implement self-models and self-recognition (Takeno, 2013), the grounding 
of symbols in sensory data streams (Kuipers, 2005), and various aspects of  attention control 
(Coward and Gedeon, 2009; Haikonen, 2007, 2012; Tinsley, 2008; Starzyk & Prasad, 2011; 
Taylor, 2007).  

The hypothesized computational correlates above have emerged from work explicitly 
directed at understanding consciousness. The viewpoint produced by the computational 
explanatory gap thus suggests that there is a third important observation to be made: 
Additional computational correlates of consciousness may be generated by studies of 
neurocognitive architectures. Unlike work explicitly studying artificial consciousness, this 
latter work attempts to map higher cognitive functions into neurocomputational mechanisms, 
independently of any explicit relationship between these functions and consciousness. Has this 
work (perhaps unintentionally) identified neurocomputational mechanisms that are 
specifically associated with conscious aspects of higher cognition? Past studies in this area far 
exceed what we can summarize here, so we focus on just two specific examples of our own 
work related to higher-level cognition, goal-directed cognitive control of working memory 
and the grounding of language, to support the claim that such studies are also generating 
hypotheses for computational correlates of consciousness.  

Our first example involves cognitive control, an umbrella term for goal-directed 
executive cognitive systems that manage other cognitive processes, such as working memory, 
planning, attention, and action selection. While developing neural architectures capable of 
modeling cognitive control processes is recognized as an important research direction today 
(Roy, 2008), actually doing so has proven to be surprisingly challenging, consistent with the 
concept of a computational explanatory gap. Neural systems struggle to represent the goals 
and rules of various cognitive tasks (Marcus, 2001), in striking contrast to symbolic AI 
systems (Simen et al., 2010). Growing interest in this issue has led to the development of 
pioneering neural models that explicitly incorporate aspects of cognitive control, such as for 
planning solutions to the Towers of London Problem (Dehaene & Changeux, 1997). 
However, for working memory (short-term memory having very limited capacity (Baddeley, 
2000)), the vast majority of neurocomputational models have no endogenous control 
mechanisms at all, with control being managed externally by a human. Further, many are 
quite specific to their given task, being unable to generalize to variations without major re-
implementation (for exceptions, see Rougier et al., 2005). 
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In our own work over the last few years, we have developed a number of attractor neural 
network models of working memory that learn temporal sequences, and have shown that their 
performance can match empirical data from human behavioral experiments (Winder et al., 
2009; Sylvester et al., 2010). But like most past working memory models, these did not 
include cognitive control mechanisms. To address this deficit, we have recently been studying 
a neural architecture called GALIS that focuses on learned cognitive control via gating 
mechanisms (Sylvester et al., 2013).  GALIS is inspired by existing knowledge of the regions 
and pathways of prefrontal cortex. Cortical regions are represented as sequence-learning 
attractor neural network modules. The same neurocomputational mechanisms that support 
working memory in one model region during executing a specific task are used in other 
regions for autonomously learning the temporal instruction sequence needed to control that 
task’s performance (Figure 2). The key functional enhancement that was needed to make this 
work effectively was to allow GALIS’ cortical control region to gate the actions of other 
cortical regions and itself. In other words, a control module learns to turn on/off the actions of 
other modules, thereby determining when input patterns are saved or discarded, when to 
learn/unlearn information in working memory, when to generate outputs, and even when to 
update its own states. GALIS has been applied successfully to learn to perform n-back 
working memory tasks (a standard psychological task) simultaneously for different values of 
n, producing accuracy and timing results reminiscent of those seen in humans performing 
similar tasks, and making testable predictions (Sylvester et al, 2013). 

 
Figure 2: The GALIS model as used for the n-Back task. Thin, solid arrows are one-to-one 
connections. The working memory layer is recurrently connected (broad arrow). Dashed lines 
are the gating outputs of the control module. The number of boxes pictured in each layer is an 
approximation only, and does not faithfully represent the number of nodes used in the model. 
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GALIS is a small step towards bridging the computational explanatory gap: its ability to 
learn temporal sequences of discrete “instructions” in a “computer-like fashion” produces a 
level of executive functionality that is more typically associated with top-down symbolic AI 
systems. Does the theory of cognitive control embedded in GALIS’s neural networks suggest 
any neurocomputational correlates of consciousness? The two critical computational 
mechanisms in GALIS that might be viewed as candidate correlates are the ability to learn 
temporal sequences of discrete instructions that are needed to perform a task, and the ability 
of a higher-level cortical control region to learn to gate other cortical regions performing the 
task (i.e., to turn other regions on/off). 

Our second example of how work on neurocognitive models is suggesting computational 
correlates of consciousness involves the grounding of language: the binding of internally-
represented symbols to external/internal phenomena, thereby giving these symbols meaning 
(Roy, 2005). Language has long been argued to be a key aspect of consciousness (Jaynes, 
1976; Rolls, 2007), and the grounding of symbols in particular has been suggested as a critical 
aspect of both phenomenal and functional consciousness (Kuipers, 2005; van der Velde, 
2013), making neurocomputational models of language grounding especially relevant to the 
computational explanatory gap.  As with cognitive control, most past efforts to create neural 
systems that capture various aspects of natural language processing have found this to be a 
challenging task, and the neurocomputational models that currently exist do not come close in 
performance to what can be achieved by contemporary AI machine learning approaches. 

Our own work over the last several years has focused on creating distributed-
representation models of natural language grounding that are inspired by the neuroanatomical 
organization of human cortical language regions and pathways. Our initial model focused on 
learning to process single words (Weems and Reggia, 2006). Sequences of auditory phonemes 
representing the names of physical objects were grounded by associating them with simple 
visual images of the corresponding objects during learning.  After training, the initially 
language-naïve model had learned to represent the “meaning” of heard words in terms of their 
visual representation as well as to name seen objects. Interestingly, simulated localized 
damage to model components (Wernicke’s area, arcuate fasciculus, etc.) produced distinct 
behavioral deficits dependent on damage location; these deficits were reminiscent of the 
classical aphasia syndromes seen in people with brain damage. This model was very limited 
though in only processing single words. 

To address this issue, we recently developed and studied a similar neural architecture 
having interacting auditory and visual pathways, but now processing multi-word sentences 
(see Figure 3).  Input sentences consisted of phoneme sequences without inter-word breaks, so 
the model needed to learn to segment the phoneme sequences into words/morphemes as well 
as to associate the resulting tokens with objects in simple scenes that it observed. Using deep 
recurrent networks and a variant of long short-term memory (Monner and Reggia, 2012a), the 
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model learned to produce the meaning of sentences describing the simple external world that 
it observed, recovering appropriate meanings even for novel objects and novel descriptive 
sentences (Monner and Reggia, 2011).  It also learned to correctly answer questions by 
observing question-answer pairs (Monner and Reggia, 2012b). Most importantly in the 
context of our current discussion is that formal analysis of the trained model found that it had 
learned/discovered a latent symbol system – a system for symbol processing that was not built 
into the structure of the network but instead emerged as part of the learned distributed 
representation adopted by the network (Monner and Reggia, 2014). While the network’s 
internal symbols are latent from our perspective as outside observers, they can be shown to be 
very real in the sense that they are accessed, manipulated and inspected by the neural 
architecture itself when interpreting sentences, including novel ones. 

 
Figure 3: The architecture of our language-grounding model. Boxes represent layers of units 
(number of units in parentheses) and straight arrows represent banks of trainable connection 
weights between units of the sending and receiving layers. Layers of memory cells are 
denoted with curved arrows, representing the self-recurrence of units in these layers. 

This grounding of language in neurocomputational models described above is quite 
limited in its scope and is only a small step towards bridging the computational explanatory 
gap. However, the demonstrated ability of a neurocomputational architecture to learn to 
ground symbols/words in terms of visual objects provides a kind of functionality that is 
usually associated with top-down symbolic AI systems.  Does this suggest any 
neurocomputational correlates of consciousness? Learned gating of neural circuitry is again 
being used, but this time at a more fine-grained level of individual simulated neurons gating 
the input, output, or activity persistence of other individual neurons, rather than at the more 
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macroscopic level of gating of whole pathways and regions as was done in GALIS. Further, 
the emergence of a latent symbol system that exhibits combinatorial computations and 
systematic behaviors using a learned distributed representation of information is a key result 
of this work.  Such a finding becomes relevant to consciousness studies to the extent that past 
theories concerning the role of language and symbol grounding in consciousness (Jaynes, 
1976; Kuipers, 2005; Rolls, 2007) are ultimately found to be correct. 

6 Discussion 
Existing computational models have successfully captured a number of neurobiological, 

cognitive and behavioral correlates of conscious information processing as machine 
simulations. Put simply, it has been possible to develop limited forms of what we have called 
simulated correlates of consciousness. This achievement is extremely important: These 
computational studies are providing a way to test whether theories about key neural, cognitive 
and/or behavioral correlates of consciousness, when implemented as computer models, can 
produce results in agreement with experimental data. Computational modeling also represents 
important progress towards producing machines that can exhibit external behaviors that are 
associated with human consciousness, and thus may lead to future artificial agents that have 
increased functionality and are able to interact with people in more natural ways (Aleksander, 
2013; Charkaoui, 2005; McCauley, 2007; Sanz et al., 2012). Put simply, work on simulated 
consciousness has become a recognized and increasingly accepted methodology for the 
scientific study of consciousness, especially within the framework of functionalism. 

In contrast, at the present time no existing approach to artificial consciousness has 
presented a compelling demonstration of instantiated (phenomenal) consciousness in a 
machine, or even clear evidence that instantiated machine consciousness will eventually be 
possible. While some investigators have made intriguing claims that the approach they are 
using is or could be the basis for a phenomenally conscious machine, none is currently 
generally accepted as having done so. In our opinion, none of the past studies of which we are 
aware, even when claimed otherwise, has yet provided a convincing case for how a given 
methodology would eventually lead to instantiated artificial consciousness. 

Our central argument here is that this apparent lack of progress towards a deeper 
understanding of instantiated machine consciousness is largely due to the computational 
explanatory gap: our current lack of understanding of how higher-level cognitive algorithms 
can be mapped onto neurocomputational algorithms/states. While those versed in mind-brain 
philosophy may be inclined to dismiss this gap as just part of the “easy problem”, we think 
such a view is at best misleading. This gap has proven surprisingly intractable to over half a 
century of research on neurocomputational methods, and existing philosophical works have 
(to our knowledge) provided no deep insight into why such an “easy problem” has proven to 
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be so intractable. On the contrary, we would argue that the computational explanatory gap is a 
fundamental issue that needs a much larger collective effort to clarify and resolve.  

Further, recognizing this gap emphasizes that substantial past computational work 
reported outside of the artificial consciousness literature is of direct relevance to 
consciousness studies. As described above, a great deal of past work on neurocognitive 
architectures has attempted to map higher cognitive functions into neurocomputational 
processes, thereby directly addressing the computational explanatory gap, without explicitly 
considering the relevance of this work to machine consciousness or consciousness studies in 
general. As can be seen from the examples that we gave above, the results from this work, and 
from many other studies, suggest that there are some potential computational correlates of 
consciousness beyond those presented previously (Cleeremans, 2005) or identified in general 
by investigators working on artificial consciousness, such as the ability to learn sequential 
attractor states, the use of adaptive gating mechanisms to exert top-down influences, and the 
presence of a learned emergent symbol system.  

Our current ability to identify several candidate computational correlates of 
consciousness is very encouraging. However, a fundamental difficulty remains: Most 
hypothesized computational mechanisms identified so far as correlates are either known to 
also occur in neurocomputational systems supporting non-conscious activities, or their 
occurrence has not yet been excluded in such settings. In other words, the main difficulty in 
identifying computational correlates of consciousness to date has been in establishing that 
proposed correlates are not also present with unconscious aspects of cognitive information 
processing. For example, the metacognitive neural networks that HOT theory has inspired 
suggest that information processing in a hierarchical neural architecture can be taken to be a 
computational correlate, but there are analogous types of information processing in biological 
neural circuits at the level of the human brainstem and spinal cord that are associated with 
apparently unconscious processing. Thus, hierarchical information processing alone would 
not fully satisfy our criteria for being a computational correlate of consciousness. Similarly, 
global/widespread neural activity per se does not appear to fully satisfy our criteria because 
such processing also occurs in apparently unconscious neural systems (e.g., interacting central 
pattern generators in isolated lamprey eel spinal cord preparations produce coordinated 
movements involving widespread distributed neural interactions (Ijspeert, 2008), but it is 
improbable that an isolated eel spinal cord should be viewed as being conscious). Very similar 
points can be made about gating mechanisms, integrated information processing, and even 
self-modeling. 

For this reason, it remains unclear whether any of the hypothesized candidates for 
computational correlates of consciousness, including those we suggest from our own studies, 
will ultimately prove to be satisfactory without further qualifications: not because they fail to 
capture important aspects of conscious information processing, but primarily because similar 
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computational mechanisms have not yet been proven to be absent in unconscious information 
processing situations. These neurocomputational mechanisms are thus not specifically 
identifiable only with human conscious cognitive activities. In short, while a great deal of 
progress has been made by studies of machine consciousness and neurocognitive architectures 
over the last two decades, only limited progress has been made by this work that is relevant to 
resolving the computational explanatory gap and identifying computational correlates of 
consciousness. 

As described earlier in this paper, we believe that bridging the computational explanatory 
gap will make bridging the philosophical explanatory gap more tractable, and that it may 
ultimately lead to an operational test for the presence of phenomenal consciousness.  In other 
words, we are suggesting that a complete characterization of high-level cognition in 
neurocomputational terms, even if it does not explicitly show us how subjective experience 
arises mechanistically, will substantially demystify the nature of phenomenal consciousness 
and perhaps even provide necessary and sufficient tests for phenomenal consciousness in an 
artifact. Such a view is compatible with and complementary to recent arguments made by 
others in the expanding literature of cognitive phenomenology (Bayne & Montague, 2011). 
We believe that bridging the computational explanatory gap is possibly the most critical step 
we could take during the next decade to advance prospects for a phenomenally conscious 
artifact and a deeper understanding of the mind-brain problem. Perhaps if progress can be 
made in this way, the insights provided will reveal that the “hard problem” is ultimately much 
easier, or at least more understandable, than it currently appears. 
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