
MALWARE DETECTION
BY EATING A WHOLE
EXE
Presented by:

Edward Raff
Jared Sylvester
Robert Brandon
1 November 2017

Malware Detection? Don’t AVs do that?
• Single incidents of malware are now causing millions in

damages.
• Potential impact is growing, see: WannaCry, Petya
• Lives can be on the line, especially when older hospital

infrastructures get infected
• AV products are built around a Signature Based approach

• Essentially extended RegExs for binaries
• Do some fancy stuff too, but often not as much
• Makes the approach reactionary
• Signatures have high specificity, but low generalization

2

Sounds like a Standard Classification
Problem…
• Machine Learning has

enjoyed huge success in
recent years at predicting
things
• What is in this picture?

(Object Detection)
• What did you say?

(Speech-to-text, Alexa, Siri)
• What did you mean?

(Sentiment Analysis)
• But Malware is more

challenging for several
reasons

3

Binaries Lack Spatial Consistency
• Jumps and Calls add weird

locality
• Spatial correlation ends at

function boundaries
• Except for when it doesn't

• Multiple hierarchies of
relationships
• Basic-block level
• Function level
• Function composition into

classes

jmp 0x4010eb
push 0x10024b78
lea ecx, dword ptr [esp + 4]
call dword ptr [MFC71.DLL:None]
push ebx
push esi
push edi
push 0x10024c05
lea ecx, dword ptr [esp + 0x14]
call dword ptr [MFC71.DLL:None]
lea ecx, dword ptr [esp + 0x24]
mov ebx, 1
push ecx
mov byte ptr [esp + 0x20], bl
call 0x41f8ec
mov edx, dword ptr [eax]

4

Malware Complicates Everything
• Malware may intentionally break rules / format

specifications
• Bug that is part of an exploit
• Intentionally trying to obfuscate itself

• Attribution, purpose, that it is even malware

• x86 code gives you the freedom to make your programs,
gives malware the freedom to be weird
• Binaries with no “code”
• Binaries with only code
• Binaries within binaries
• Binaries composed of only the x86 mov instruction.
• Binaries that can detect if they are in a VM

5

Complication Makes Feature Extraction
Difficult
• Simple things like getting values from the PE header are

non-trivial
• We’ve tested multiple libraries with disagreements on header content
• Windows doesn't even follow the PE-spec

• A number of companies have followed through on this
domain-knowledge based path
• Expensive proprietary feature extraction systems

• Reverse engineering the windows loader
• Hooking deep into the OS
• Enhanced emulated execution

• Huge amount of effort and person-hours just for features
• What if we want to work for any new format?

6

A Domain Knowledge Free Approach
• DK-free means we don’t encode any knowledge about the

file format in the solution: Looking at raw bytes.
• Means we are going to be doing static analysis.

• DK-free means we can adapt to new file formats (given
data).
• Build new models for PDFs, RTFs, etc., as they become a problem.
• Ready to work for any new file format as it arises.
• Save time on feature extraction, time-to-solution reduced.

• DK-free means we get rid of old problems, but also
introduce new ones. That’s what we tackle in this work.

• We think a neural-network based solution is most likely to
succeed.

7

How do we Make a Neural Net Process a
Whole Binary?
• Problems:

• Binaries are variable length
• Binaries are large
• Binaries can store many things

• We found that many best-practices in the image domain
didn’t translate to our space
• We needed to make our network shallow instead of deep
• We needed to use large filter sizes instead of small
• We needed to be very careful in how we handle variable length

• Memory constraints are the primary bottle neck
• Modern frameworks were never designed for inputs of 2 million

time steps!
• Just the first convolution uses >40GB of RAM for backpropagation

8

MalConv Architecture, Part 1
Input (1-2M bytes)

Tokenization (non-trainable lookup table)

MZ\x90\x00\x03\x00\x00\x00\x04\x00\x00\x00\xff\xff\x00\x00\x00\xb8\x00...........................\xc5\xff)\xd0~\x90\xc5M\xb1\xfbt8\xac\x0f[\x00\x00\x00\xac

78, 91, 145, 1, 4, 1, 1, 1, 5, 1, 1, 1, 256, 256, 1, 1, 185, 1, 1, 1, 1, 1, 65, 1,, 45, 239, 81, 63, 204, 198, 256, 42, 209, 127, 145, 198, 78, 0, 0, 0, 0, 0, 0

Zero padding to batch
max length ~2MB

8-dimensional embedding (trainable lookup table)

1D Convolution
kernel size 500,

stride 500,
128 filters

Integers

Byte string

9

MalConv Architecture, Part 2
Gating

Temporal max pooling

128-dim FC layer

Softmax

10

Data and Evaluation
• Using two test sets, Groups “A” and “B”

• Allow us to better test generalization
• The I.I.D. assumption is strongly violated by malware

• Cross-Validation will over-estimate your accuracy!
• Group A is public data, benign comes from Microsoft Windows
• Group B is private AV data, real-world

• Training, we use two private datasets from our AV partner
• 400k training set, used in prior work.
• 2 million training set, over 2 TB in size!

11

Primary Results
• We have a model and we have data. Now for some

results!
• 1) How accurate is MalConv?

• Is it better than what we could do before?
• 2) What does MalConv learn?

• Does it learn more than what prior results did?
• 3) What have we learned?

• A lot of ML practice does not easily transfer to this new domain!

12

MalConv Results

• Trained on 400,000 binaries
• Evaluated on two datasets
• MalConv has best holistic performance

• Outperformed our prior work looking at just the PE-Header
• Smallest gap between two test sets, indicates robustness to

features

13

MalConv Results

• Trained on a larger corpus of 2 million binaries
• Took a month on a DGX-1
• N-grams took one month to count using 12 servers.

• MalConv performance improved, Byte n-grams decreased
• MalConv still has growth on the learning curve
• N-grams are overfitting

14

What is MalConv Learning?
• Our prior work has found that byte n-grams really only

learn the PE-Header.
• We expect PE-Header to make a big portion of any model, because

it’s the easiest to learn.

• Because MalConv has temporal max-pooling, we can look
back and see which areas of the binary will respond.
• Produces a sparse set of 128 regions each of 500 bytes per binary.

• Using tools to parse the PE-Header, we can look at what
sections the blocks were found in.
• Gives us an idea about the type of features it is learning.

15

What is MalConv Learning?

• Blocks can indicate they were used to recognize benign-ness
or maliciousness.
• The PE-Header makes up ~60% of regions used. PE-Header

properties are a strong indicator of maliciousness to domain experts.
• Lots of new regions we weren’t learning from before!

• UPX1 for both benign and malicious is interesting.
• UPX is a packer, and many models degrade to saying packers are

always malicious.
• Significant use of resource and code sections

• Strong indication that we are learning to extract far more information
than previous approaches.

16

What Didn’t Work: BatchNorm
• Sacrilege warning: BatchNorm doesn’t always work.
• Issue with data modality. Every pixel in an image is a

pixel. Meaning doesn’t change.
• Byte meaning is context sensitive
• When we trained with BatchNorm, models failed to ever

learn.
• Training accuracy would reach 60% at best.
• Testing would be 50% random guessing.
• Happened with every architecture we tested.

17

The Failure of BatchNorm

18

Questions?

Edward Raff
Raff_Edward@bah.com
@EdwardRaffML

Dr. Jared Sylvester
Sylvester_Jared@bah.com

@jsylvest

Dr. Robert Brandon
Brandon_Robert@bah.com

@Phreaksh0

“Malware Detection by Eating a Whole EXE”
https://arxiv.org/abs/1710.09435

19

