MALWARE DETECTION
BY EATING AWHOLE
EXE

Presented by:
Edward Raff
Jared Sylvester

Robert Brandon
1 November 2017

8

QO A Ca

18 / 56
(j A\ //éQ

Booz | Allen | Hamilton

Malware Detection”? Don’t AVs do that?

- Single incidents of malware are now causing millions in
damages.
- Potential impact is growing, see: WannaCry, Petya
- Lives can be on the line, especially when older hospital
infrastructures get infected
- AV products are built around a Signature Based approach
- Essentially extended RegExs for binaries
- Do some fancy stuff too, but often not as much
- Makes the approach reactionary
- Signatures have high specificity, but low generalization

Sounds like a Standard Classmcatlon

Problem..

- Machine Learning has
enjoyed huge success in
recent years at predicting
things

- What is in this picture?
(Object Detection)

- What did you say?
(Speech-to-text, Alexa, Siri)

- What did you mean?
(Sentiment Analysis)

- But Malware is more

challenging for several
reasons

person

>1

£

20 : e . .

°© : P : i

o H N H H

— H H H I H H

o P : P :

< VA 2 LA LA i A8 CTC

o G W STEVZE ALY, N S
dh a W n g2 ix v
"the" |||||| d|l - llofll

I found this to be a charming adaptation, very lively and full of fun.
ith the ‘exception of a couple of major errors, the cast is wonderful. I
have t cho some of the earlier comments -- Chynna Phillips is horribly

mlscast as a teenager At 21, she s just too old (and, yes it DOES show)

is a dece

irkle -- with special kudos to Brigitta

Dau and Chiara Zanni. I also enjoyed Tyne Daly's performance, though I'm
not generally a fan of her work. Finally, the dancing Shriners are a riot,
especially the dorky three in the bar. The movie is suitable for the whole

family, and I highly recommend it.

Binaries Lack Spatial Consistency

- Jumps and Calls add weird jmp ex4e1eeb

: push 0x10024b78
|OC8|Ity lea ecx, dword ptr [esp + 4]
- Spatial correlation ends at ~ call dword ptr [MFC71.DLL:None]
function boundaries push ebx
push esi
- Except for when it doesn't push edi
- Multiple hierarchies of push 0x10024c05
.) lea ecx, dword ptr [esp + 0x14]
re|at|0n$h|p3 call dword ptr [MFC71.DLL:None]
- Basic-block level lea ecx, dword ptr [esp + 0x24]
: mov ebx, 1
- Function level bush ecx
- Function composition into mov byte ptr [esp + 0x20], bl
classes call ox41f8ec

mov edx, dword ptr [eax]

Malware Complicates Everything

- Malware may intentionally break rules / format
specifications
- Bug that is part of an exploit

- Intentionally trying to obfuscate itself
- Attribution, purpose, that it is even malware

- X86 code gives you the freedom to make your programs,
gives malware the freedom to be weird
- Binaries with no “code”
- Binaries with only code
- Binaries within binaries
- Binaries composed of only the x86 mov instruction.
- Binaries that can detect if they are in a VM

Complication Makes Feature Extraction
Difficult

- Simple things like getting values from the PE header are
non-trivial
- We've tested multiple libraries with disagreements on header content
- Windows doesn't even follow the PE-spec

- A number of companies have followed through on this
domain-knowledge based path
- Expensive proprietary feature extraction systems
- Reverse engineering the windows loader

- Hooking deep into the OS
- Enhanced emulated execution

- Huge amount of effort and person-hours just for features
- What if we want to work for any new format?

A Domain Knowledge Free Approach

- DK-free means we don’t encode any knowledge about the
file format in the solution: Looking at raw bytes.
- Means we are going to be doing static analysis.

- DK-free means we can adapt to new file formats (given
data).
- Build new models for PDFs, RTFs, etc., as they become a problem.
- Ready to work for any new file format as it arises.
- Save time on feature extraction, time-to-solution reduced.

- DK-free means we get rid of old problems, but also
introduce new ones. That’s what we tackle in this work.

- We think a neural-network based solution is most likely to
succeed.

How do we Make a Neural Net Process a
Whole Binary?

- Problems:
- Binaries are variable length
- Binaries are large
- Binaries can store many things

- We found that many best-practices in the image domain
didn’t translate to our space
- We needed to make our network shallow instead of deep
- We needed to use large filter sizes instead of small
- We needed to be very careful in how we handle variable length

- Memory constraints are the primary bottle neck

- Modern frameworks were never designed for inputs of 2 million
time steps!
- Just the first convolution uses >40GB of RAM for backpropagation

I
MalConv Architecture, Part 1

Input (1-2M bytes)

MZ\x90\x00\X03\X00\X00\X00\X04\X00XO0\XOOFAXFAXOOXOOXOOKDEXOO. ... XCB\XT)\Xd0~\X90\XCEMXb 1 \xfbt8\xac\XOf\00\X00\00\Xac Byte string
Tokenization (non-trainable lookup table)
78,91,145,1,4,1,1,1,5,1,1,1,256, 256, 1, 1,185, 1, 1,1, 1, 1,65, 1, r.ocvrvrevevcccrrrrrriss 45,239, 81, 63, 204, 198, 256, 42, 209, 127, 145, 198, 78, 0,0, 0, 0, 0, 0 Integers
@ Zero padding to batch
max length ~2MB
8-dimensional embedding (trainable lookup table)

1D Convolution\

kernel size 500,

stride 500,
128 filters
A=ExW+b
B=FEx*V+c

/

.
MalConv Architecture, Part 2

!
{ 0000 :"ZZZZZT}
U
{ 0O000000O0O0 00 H_:VP}
|

0000
0000
0000

SSSSSS
Y = softmax(W Hg)

Data and Evaluation

- Using two test sets, Groups “A” and “B”
- Allow us to better test generalization

- The I.1.D. assumption is strongly violated by malware
- Cross-Validation will over-estimate your accuracy!

- Group A is public data, benign comes from Microsoft Windows
- Group B is private AV data, real-world

- Training, we use two private datasets from our AV partner
- 400k training set, used in prior work.
- 2 million training set, over 2 TB in size!

Primary Results

- We have a model and we have data. Now for some
results!

- 1) How accurate is MalConv?
- |s it better than what we could do before?

- 2) What does MalConv learn?
- Does it learn more than what prior results did?

- 3) What have we learned?
- Alot of ML practice does not easily transfer to this new domain!

MalConv Results

MalConv Byte n-grams PE-Header Network
Test Set Accuracy AUC Accuracy AUC Accuracy AUC
Group A 88.1 98.5 87.0 98.4 90.8 97.7
Group B 89.6 95.8 92.5 97.9 83.7 91.4

- Trained on 400,000 binaries
- Evaluated on two datasets

- MalConv has best holistic performance
- Outperformed our prior work looking at just the PE-Header

- Smallest gap between two test sets, indicates robustness to
features

MalConv Results

MalConv Byte n-grams
Test Set Accuracy AUC Accuracy AUC

Group A 94.0 98.1 82.6 93.4
Group B 90.9 98.2 91.6 97.0

- Trained on a larger corpus of 2 million binaries
- Took a month on a DGX-1
- N-grams took one month to count using 12 servers.

- MalConv performance improved, Byte n-grams decreased
- MalConv still has growth on the learning curve
- N-grams are overfitting

What is MalConv Learning?

- Our prior work has found that byte n-grams really only
learn the PE-Header.

- We expect PE-Header to make a big portion of any model, because
it's the easiest to learn.

- Because MalConv has temporal max-pooling, we can look
back and see which areas of the binary will respond.
- Produces a sparse set of 128 regions each of 500 bytes per binary.
- Using tools to parse the PE-Header, we can look at what
sections the blocks were found in.
- Gives us an idea about the type of features it is learning.

What is MalConv Learning?

Section Total = PE-Header .rsrc text UPX1 CODE .data .data .reloc

Malicious 26,232 15,871 3,315 2878 697 615 669 383 214
Benign 19,290 11,183 2,653 2414 596 505 423 243 77

- Blocks can indicate they were used to recognize benign-ness
or maliciousness.

- The PE-Header makes up ~60% of regions used. PE-Header
properties are a strong indicator of maliciousness to domain experts.

- Lots of new regions we weren'’t learning from before!
- UPX1 for both benign and malicious is interesting.

- UPXis a packer, and many models degrade to saying packers are
always malicious.

- Significant use of resource and code sections

- Strong indication that we are learning to extract far more information
than previous approaches.

What Didn’'t Work: BatchNorm

- Sacrilege warning: BatchNorm doesn’t always work.

- Issue with data modality. Every pixel in an image is a
pixel. Meaning doesn’t change.

- Byte meaning is context sensitive
- When we trained with BatchNorm, models failed to ever

learn.

- Training accuracy would reach 60% at best.
- Testing would be 50% random guessing.
- Happened with every architecture we tested.

The Failure of BatchNorm

o ---- Res5c
% --- Res3b3
1 'I -~ -1v4 Convl ||
i_| —— MalConv
é . --- N(0,1)
0.5

Standardized Output Value

Questions?

Edward Raff Dr. Jared Sylvester Dr. Robert Brandon

Raff Edward@bah.com Sylvester_Jared@bah.com Brandon Robert@bah.com
@EdwardRaffML @)jsylvest @PhreakshO

“Malware Detection by Eating a Whole EXE”
https://arxiv.org/abs/1710.09435

