Gated Attractors Learning
Instruction Sequences

Jared Sylvester
7 May 2013

PN
9,

Computer Science
UNIVERSITY OF MARYLAND



Motivation

= Gap between neural & symbolic Al systems
= Neural: perception, motor control, ...
= Symbolic: planning, goals, rules, ...

= Neural systems are too
“hard-wired”

= Behavior Is baked into
architecture

= New problems require
entirely new systems
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Goal

» (Generalizable model of cognitive control
= | earned, not hard-wired into network structure
» Base behavior on memory contents

= Two type of memory/learning:
= Memory of perceptual stimuli
= Memory of task procedures

= Biological inspiration:

» Network of regions, recurrent attractor nets, gating,
distributed representations, Hebbian learning



Attractor Net Memories
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= Stored patterns are attractors
* Form auto-associative memory

= But fixed-point attractors
= Network gets “stuck” in attractor basin



Sequential Attractor Nets

- >
time
* Dynamic thresholds
» |ncrease when node’s state remains unchanged
» Harder for node to stay in the same state
Reggia, Sylvester, Weems & Bunting Winder, Reggia, Weems & Bunting. “An oscillatory
“A simple oscillatory short-termm memory Hebbian network model of short-term memory.”

model.” BICA 20009. Neural Computation, 2009.



Ordered Sequential Attractors

time

= Asymmetric weights
= Correlate activity with other nodes’ previous activity
1
t t—1 t t—1
= Network transitions between attractors in order

Sylvester, Reggia, Weems & Bunting. “A temporally asymmetric
Hebbian network for sequential working memory.” ICCM 2010. 7



Adding Cognitive Control

» Modeled Running Memory Span task
= Can match human behavioral results
= But all control was exogenous

» For internal control, use multiple networks
» Network of attractor networks
= Controlled by gating
» | earn processing of sequences



Control Mechanism

= Built around attractor networks

= Trained prior to task beginning

» Directs the model by operating gates

= Core is “Instruction Sequence Memory”



Control Mechanism

= SUlt around attractor networks
= [rained prior to task beginning
= Directs the model by operating gates

= Core is “Instruction Sequence Memory”
= Stores sequence of steps to do subtasks
» Multiple sequences stored simultaneously
» Divided into cue & response sections

10



Instruction Sequence Memory

Distributed ‘cue’ pattern

Make tea




Instruction Sequence Memory

Distributed ‘cue’ pattern Distributed ‘response’ patterns

Make tea Boil water

Steep tea bag
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Instruction Sequence Memory

Distributed ‘cue’ pattern Distributed ‘response’ patterns
Make tea Boil water
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Instruction Sequence Memory

Distributed ‘cue’ pattern Distributed ‘response’ patterns
Make tea > Boil water
Make tea ) Steep tea bag
Make tea =) Add sugar It
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Instruction Sequence Memory

Distributed ‘cue’ pattern Distributed ‘response’ patterns
Make tea Boil water
Make tea Steep tea bag
Make tea Add sugar J t
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n-Back

= (Given sequence of inputs...

...does most recent input match input n steps ago?
» Must maintain sequence in WM; make judgments

S-back
) ADJAEFDK]JDICAK|JFFHD
L | T L
Match No Match No Match

* GALIS model learns n=1,2,3,4,5
= | earns all five without knowing which it will perform

= \ersion determined by input patterns only

(last)



GALIS Architecture
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GALIS Architecture

e Memory Input Gate
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Human Comparison:
Accuracy
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Model time steps per stimulus
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Changing n
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Visuospatial Architecture

Executive System
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Visuospatial Architecture
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Symbolic / Sub-symbolic

= Attractor space is very high dimensional
* | earning algorithms
= Partial pattern matching

= Each attractor Is a discrete symbol
» Gating also adds discreteness



Instruction vs. Construction

= Behavior based on memory contents
not just architecture

TR 4

C

= Can “program” a neural net

= Now programs are hand-crafted by modeler
= Store = improve = learn ab initio



