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Motivation 
  Gap between neural & symbolic AI systems


 Neural: perception, motor control, …

  Symbolic: planning, goals, rules, …
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  Neural systems are too 
“hard-wired”

  Behavior is baked into 

architecture

 New problems require 

entirely new systems
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Goal 

  Generalizable model of cognitive control

  Learned, not hard-wired into network structure

  Base behavior on memory contents


  Two type of memory/learning:

  Memory of perceptual stimuli

  Memory of task procedures


  Biological inspiration:

  Network of regions, recurrent attractor nets, gating, 

distributed representations, Hebbian learning
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Attractor Net Memories 

time 

  Stored patterns are attractors

  Form auto-associative memory


  But fixed-point attractors

  Network gets “stuck” in attractor basin
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Sequential Attractor Nets 
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time 

  Dynamic thresholds

  Increase when node’s state remains unchanged

  Harder for node to stay in the same state


Reggia, Sylvester, Weems & Bunting"
“A simple oscillatory short-term memory"
model.” BICA 2009.


Winder, Reggia, Weems & Bunting. “An oscillatory 
Hebbian network model of short-term memory.” 
Neural Computation, 2009.




Ordered Sequential Attractors 
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time 

  Asymmetric weights

  Correlate activity with other nodes’ previous activity 


  Network transitions between attractors in order
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Sylvester, Reggia, Weems & Bunting. “A temporally asymmetric"
Hebbian network for sequential working memory.” ICCM 2010.




Adding Cognitive Control 

  Modeled Running Memory Span task

 Can match human behavioral results

  But all control was exogenous


  For internal control, use multiple networks

 Network of attractor networks

 Controlled by gating

  Learn processing of sequences
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Control Mechanism 

  Built around attractor networks

  Trained prior to task beginning

  Directs the model by operating gates

  Core is “Instruction Sequence Memory”
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Control Mechanism 

  Built around attractor networks

  Trained prior to task beginning

  Directs the model by operating gates

  Core is “Instruction Sequence Memory”


  Stores sequence of steps to do subtasks

 Multiple sequences stored simultaneously

  Divided into cue & response sections
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Make tea


Distributed ‘cue’ pattern
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Instruction Sequence Memory 



Make tea
 Boil water


Steep tea bag


Add sugar
 t	
  

Distributed ‘cue’ pattern
 Distributed ‘response’ patterns
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Instruction Sequence Memory 



Make tea
 Boil water


Make tea
 Steep tea bag


Make tea
 Add sugar
 t	
  

Distributed ‘cue’ pattern
 Distributed ‘response’ patterns
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Instruction Sequence Memory 



Make tea
 Boil water


Make tea
 Steep tea bag


Make tea
 Add sugar
 t	
  

Distributed ‘cue’ pattern
 Distributed ‘response’ patterns
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Instruction Sequence Memory 



Make tea
 Boil water


Make tea
 Steep tea bag


Make tea
 Add sugar
 t	
  

Distributed ‘cue’ pattern
 Distributed ‘response’ patterns
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Instruction Sequence Memory 



n-Back 

  Given sequence of inputs…"
    …does most recent input match input n steps ago?


  Must maintain sequence in WM; make judgments


  GALIS model learns n=1,2,3,4,5

  Learns all five without knowing which it will perform

  Version determined by input patterns only
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Match No Match No Match 
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GALIS Architecture 



Controller 
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Encoder Input (96)!

Encoder Hetero-associative (320)!

Encoder Auto-associative (320)!
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GALIS Architecture 



Human Comparison: 
Accuracy 
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Human Comparison: 
Response Time 
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Changing n 
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Visuospatial Architecture 
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Visuospatial Architecture 
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Symbolic / Sub-symbolic 

  Attractor space is very high dimensional

  Learning algorithms

  Partial pattern matching


  Each attractor is a discrete symbol

  Gating also adds discreteness
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Instruction vs. Construction 
  Behavior based on memory contents"

not just architecture


  Can “program” a neural net

  Now programs are hand-crafted by modeler

  Store  improve  learn ab initio
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