GALIS Gated Attractors Learning Instruction Sequences

Jared Sylvester 7 May 2013

Computer Science

Motivation

- Gap between neural & symbolic AI systems
 - Neural: perception, motor control, …
 - Symbolic: planning, goals, rules, ...
- Neural systems are too "hard-wired"
 - Behavior is baked into architecture
 - New problems require entirely new systems

Goal

- Generalizable model of cognitive control
 - Learned, not hard-wired into network structure
 - Base behavior on memory contents
- Two type of memory/learning:
 - Memory of perceptual stimuli
 - Memory of task procedures
- Biological inspiration:
 - Network of regions, recurrent attractor nets, gating, distributed representations, Hebbian learning

Attractor Net Memories

time

$$w_{ij}^{t} = (1 - k_D)w_{ij}^{t-1} + \frac{1}{N}a_i^{t}a_j^{t}(1 - \delta_{ij})$$

- Stored patterns are attractors
 - Form auto-associative memory
- But fixed-point attractors
 - Network gets "stuck" in attractor basin

Sequential Attractor Nets

time

- Dynamic thresholds
 - Increase when node's state remains unchanged
 - Harder for node to stay in the same state

Reggia, Sylvester, Weems & Bunting "A simple oscillatory short-term memory model." BICA 2009. Winder, Reggia, Weems & Bunting. "An oscillatory Hebbian network model of short-term memory." Neural Computation, 2009.

Ordered Sequential Attractors

time

- Asymmetric weights
 - Correlate activity with other nodes' previous activity

$$v_{ij}^{t} = (1 - k_D)v_{ij}^{t-1} + \frac{1}{N}a_i^{t}a_j^{t-1}$$

Network transitions between attractors in order

Sylvester, Reggia, Weems & Bunting. "A temporally asymmetric Hebbian network for sequential working memory." ICCM 2010.

Adding Cognitive Control

- Modeled Running Memory Span task
 - Can match human behavioral results
 - But all control was exogenous
- For internal control, use multiple networks
 - Network of attractor networks
 - Controlled by gating
 - Learn processing of sequences

Control Mechanism

- Built around attractor networks
- Trained prior to task beginning
- Directs the model by operating gates
- Core is "Instruction Sequence Memory"

Control Mechanism

- Built around attractor networks
- Trained prior to task beginning
- Directs the model by operating gates
- Core is "Instruction Sequence Memory"
 - Stores sequence of steps to do subtasks
 - Multiple sequences stored simultaneously
 - Divided into cue & response sections

Distributed 'cue' pattern

Make tea

$$v_{ij}^t = (1 - k_{\text{CTRL}})v_{ij}^{t-1} + \frac{1}{N}a_i^t a_j^{t-1}$$

15

n-Back

- Given sequence of inputs...
 ...does most recent input match input n steps ago?
- Must maintain sequence in WM; make judgments

- GALIS model learns *n*=1,2,3,4,5
 - Learns all five without knowing which it will perform
 - Version determined by input patterns only

GALIS Architecture

GALIS Architecture

Human Comparison: Accuracy

Human Comparison: Response Time

21

Changing n

Visuospatial Architecture

Visuospatial Architecture

24

Symbolic / Sub-symbolic

- Attractor space is very high dimensional
 - Learning algorithms
 - Partial pattern matching
- Each attractor is a discrete symbol
- Gating also adds discreteness

Instruction vs. Construction

 Behavior based on memory contents not just architecture

- Can "program" a neural net
 - Now programs are hand-crafted by modeler
 - Store → improve → learn ab initio