Oscillatory Neural Network Models of Sequential Short-Term Memory

June 15, 2010

Jared Sylvester Comp. Sci. Scott Weems CASL, Psychology Jim Reggia Comp. Sci., CASL

with Mike Bunting

Sylvester J, Reggia J, Weems S and Bunting M. "A temporally asymmetric Hebbian network for sequential working memory." Int'l Conf. on Cognitive Modeling, August 2010. In press.

Short-Term Memory

short-term memory refers to the human memory system that retains information over brief time intervals (on the order of seconds)
characterized by substantial *capacity limitations* in contrast to the relatively limitless capacity of more permanent long-term memory:
approximately four items [Cowan et al, 2005]

Conceptual overview

Problem

Need to improve foreign language comprehension

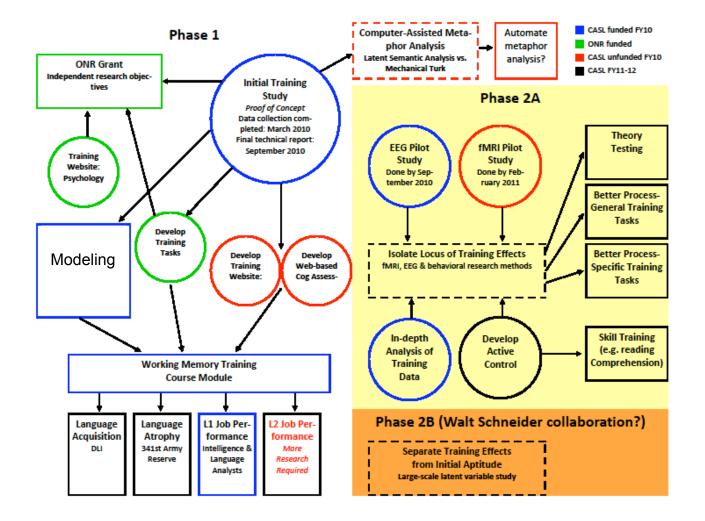
Relevance

Working memory is critical for comprehension

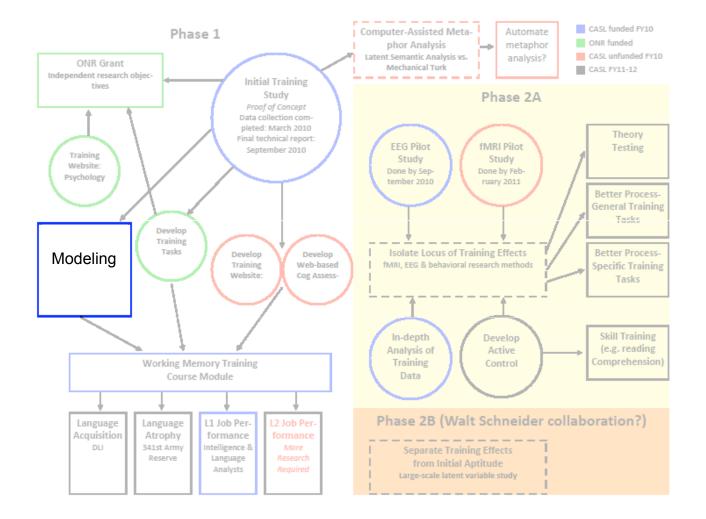
Goal

Improve comprehension through working memory training

TTO 3501: The Overview



TTO 3501: The Overview



Goals for the Computational Modeling

- To identify individual difference variables that predict training benefits
 - 1. Develop machine learning/classifiers to make training effect predictions
- To explore how items are retained in working memory to better understand what the training is changing
 - 2. Develop simple attractor models of short term memory simulating human performance
 - 3. Expand those models to include cognitive control elements

Goals for the Computational Modeling

To identify individual difference variables that predict training benefits

- 1. Develop machine learning/classifiers to make training effect predictions
- To explore how items are retained in working memory to better understand what the training is changing
 - 2. Develop simple attractor models of short term memory simulating human performance
 - 3. Expand those models to include cognitive control elements

Neural Modeling: Goal

• Examine the relative roles of decay and interference in determining short-term memory capacity

by

- Developing *simple oscillatory models* of short-term memory with decay
- comparing the models' performances to experimental results from human subjects

Overview

- Background:
 - behavioral data
 - neural models of memory
 - fixed attractor networks
 - oscillatory networks
- Initial Model: Oscillatory Networks with Decay
 - model properties
 - comparison to behavioral data
- Updated Model: Temporally Asymmetric Weights
 - model properties
 - results

Overview

- Background:
 - behavioral data
 - neural models of memory
 - fixed attractor networks
 - oscillatory networks
- Initial Model: Oscillatory Networks with Decay
 - model properties
 - comparison to behavioral data
- Updated Model: Temporally Asymmetric Weights
 - model properties
 - results

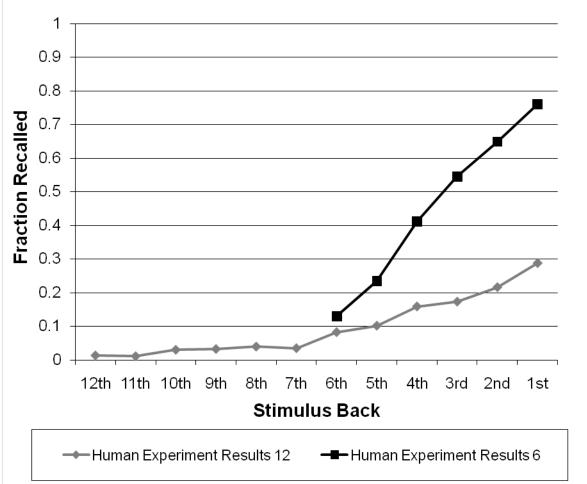
The View from Experimental Psychology

Behavioral Task: Running Memory Span

- 38 adult subjects; part of a larger study
- sequence of digits presented in rapid succession
 - 13684592... (12 to 20 digits)
 - 2 per second presentation rate
 - Not aware of when sequence will end
- subject expected to retain and repeat the most recently seen 6 or 12 digits of the sequence
 - digits entered by mouse clicks
- accuracy:
 - number correctly recalled in correct position
 - results averaged over twelve trials per subject

The View from Experimental Psychology

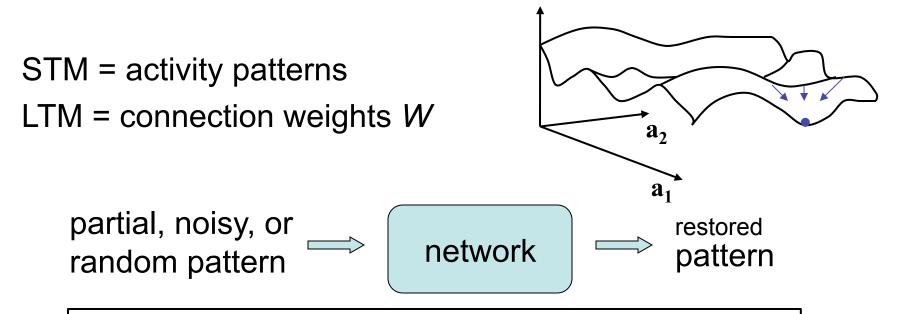
Behavioral Task



Overview

- Background:
 - behavioral data
 - neural models of memory
 - fixed attractor networks
 - oscillatory networks
- Initial Model: Oscillatory Networks with Decay
 - model properties
 - comparison to behavioral data
- Updated Model: Temporally Asymmetric Weights
 - model properties
 - results

Attractor Neural Network Models of Memory



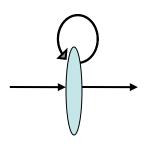
Content-addressable memory:

- stored memory is attractor state of network
- usually involves fixed point attractors
- however, growing interest in oscillatory attractors
 - brain highly oscillatory
 - multiple patterns active

Fixed-Point Attractor Networks

Hopfield networks, brain-state-in-a-box, and related models

- recurrent network structure
- content-addressable memory system
- store memory patterns by changing the weights w_{ij} on connections between nodes
- Hebbian learning used
 - strengthen connections between co-active nodes



Storage: Hebbian Learning

• Network: *N* nodes, fully connected node activity $a_i = \pm 1$

• Memories:
$$\vec{a}^p$$
, $p = 1, 2, ..., M$
• Storage: $w_{ij} = w_{ij}^{old} + \frac{1}{N}a_i a_j$ (except $w_{ii} = 0$)

Memory storage is order independent!

Recall

• Recall: randomly and asynchronously do the following

$$\begin{array}{c}
\psi_{ij} \\
h_i(t) = \sum_j w_{ij} a_j(t) - \theta_i \\
\downarrow \\
\pm 1 \\
 \end{array}$$

$$\begin{array}{c}
a_i(t+1) = \pm 1 \text{ with probability } \left(1 + e^{\mp 2h_i/T}\right)^{-1}
\end{array}$$

- traditionally terminates when there is no longer any change in the network state
- cause of failure to recall stored stimuli: interference

Simple Oscillatory Networks

uses same method for storing patterns

- node thresholds θ_i change to induce oscillation
- initially during recall $\theta_i = 0$
- when $a_i = +1 \rightarrow \theta_i$ rises
- when $a_i = -1 \rightarrow \theta_i$ drops
- these changes make it harder b = 0.15, c = 1.2as time passes for a node to remain in a single state

Threshold Dynamics:

$$\theta_i(t) = bR_i(t)$$

$$R_i(t+1) = \frac{R_i(t)}{c} + a_i(t+1)$$

$$b = 0.15 \ c = 1.2$$

 \Rightarrow network oscillates between stored memory patterns

Overview

- Background:
 - behavioral data
 - neural models of memory
 - fixed attractor networks
 - oscillatory networks
- Initial Model: Oscillatory Networks with Decay
 - model properties
 - comparison to behavioral data
- Updated Model: Temporally Asymmetric Weights
 - model properties
 - results

Simple Oscillatory Model of STM

the weights now stores memories that decay

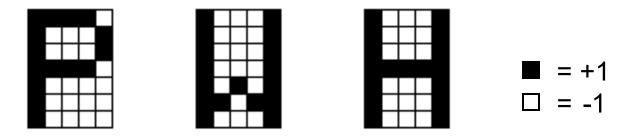
• Storage:
$$W_{ij} = (1 - k_d) W_{ij}^{old} + \frac{1}{N} a_i a_j$$
 (except $w_{ii} = 0$)

where k_d is the *decay rate*

- Recall: same as before
 - memory storage is no longer order independent!
 - causes of failure to recall stored stimuli: interference and decay

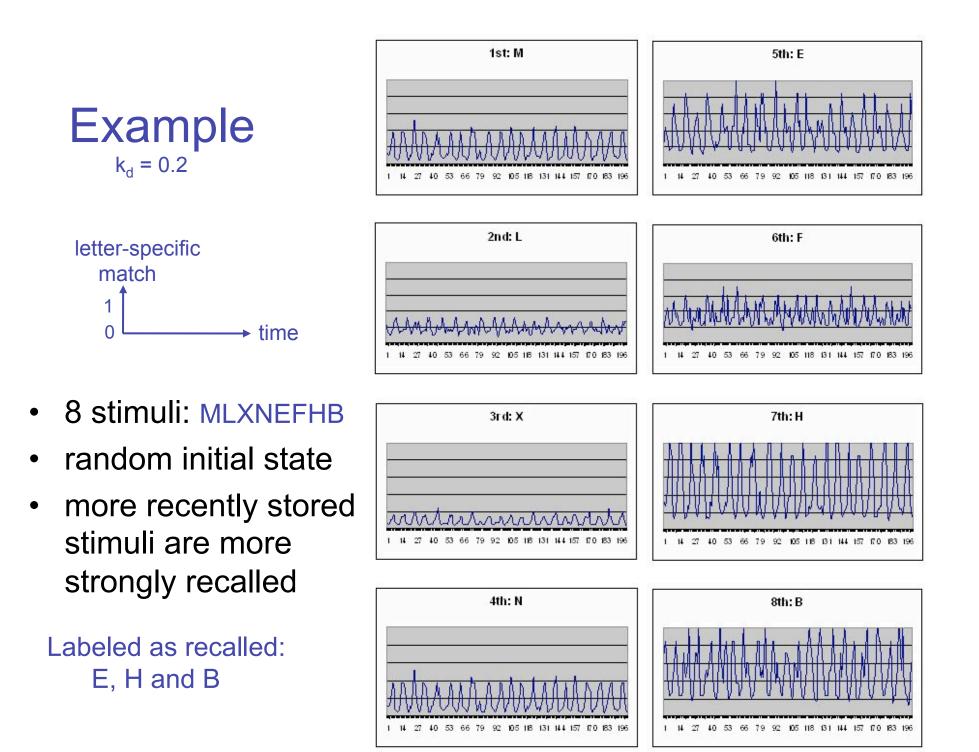
Stimuli

- network structure
 - *N* = 35 nodes (7 rows and 5 columns)
- "arbitrary" stimuli used as patterns to be stored
- represented as letters for easy identification
 - letters A Z represented as ±1 patterns
- examples:



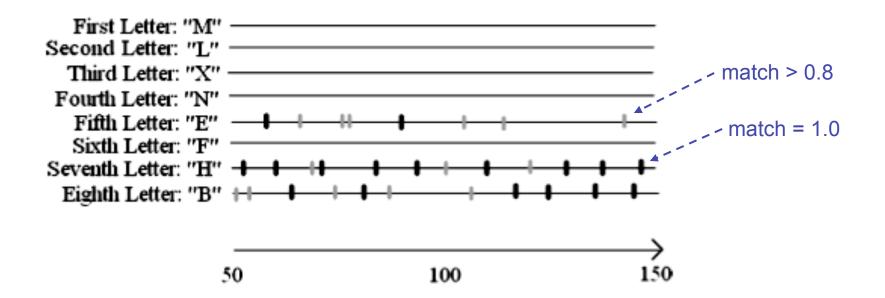
Measuring Model's Retention of Stimuli

- train network on sequences of stimuli of different lengths
 - (4,8,12,16, or 20 no repeated stimuli in a sequence)
- after storing each sequence:
 - start network in a random initial state of activity
 - run the network for 200 time steps as it oscillates
 - at each time step measure model's similarity to the memory patterns that served as stimuli
 - record all patterns that are perfectly remembered
- results averaged over hundreds/thousands of trials

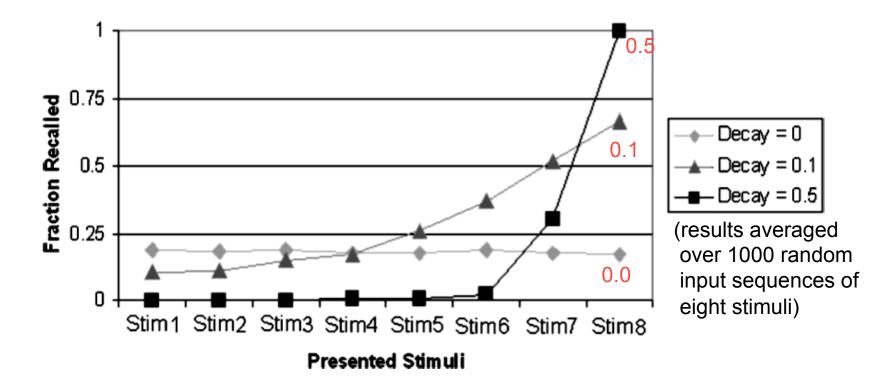


Same Example: Recall Behavior

- three perfectly recalled patterns
- alternating appearance in network



Fraction of Stimuli Recalled vs. Stimulus Position

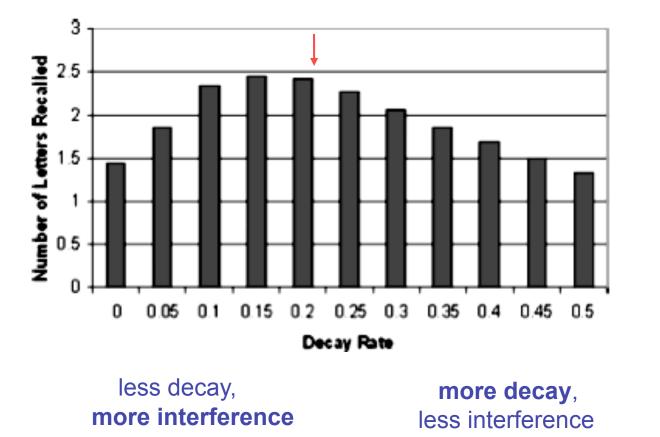


- recency effect observed with most decay rates k_d
- as decay increases
 - recent stimuli are more likely to be retained
 - older stimuli are less likely to be retained

Theoretical Analysis

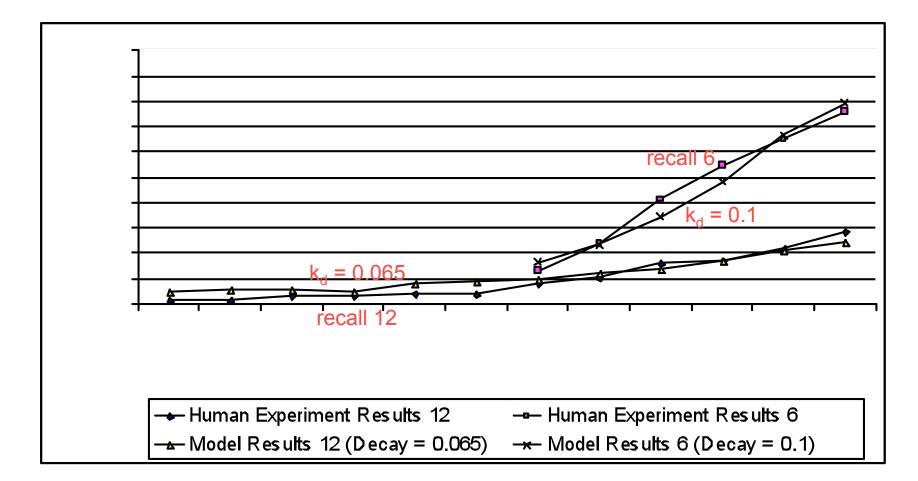
- The non-linear, stochastic nature of model makes it difficult to analyze mathematically.
- What value of *k_d* will maximize the number of stimuli that are recalled?
- Analysis: both *interference* and *decay* contribute to losing stimuli from memory.
- Tradeoff: larger k_d leads to more decay but less interference.
- Result: intermediate values of k_d are optimal.
- For our stimuli, a very rough value of $k_d \approx 0.22$ is predicted to be optimal.

Stimuli Recalled with Different Decay Rates k_d



(results averaged over 1000 random input sequences)

Comparison of Model Results to Behavioral Data



Comments

- simple oscillatory model of short-term memory
- unlike past models, incorporates decay of stimuli
- demonstrates recency effect with non-zero decay rates
- both interference and decay prevent recall of stimuli
- can match behavioral data on different tasks simply by varying the decay rate used by the model
- hypothesis:

Dynamic adjustments to activity decay rate may be an important aspect of the human attention mechanisms controlling forgetting.

Overview

- Background:
 - behavioral data
 - neural models of memory
 - fixed attractor networks
 - oscillatory networks
- Initial Model: Oscillatory Networks with Decay
 - model properties
 - comparison to behavioral data
- Updated Model: Temporally Asymmetric Weights
 - model properties
 - results

Revised Model: Temporally Asymmetric Weights

- previous model does not recall in order
 - human subjects do
 - rectify this discrepancy
- approach: add a second set of weights
 - similar, but *temporally asymmetric*
 - link node activity now with previous activity

Model Details

- *N* = 35 binary nodes
- $W = N \times N$ weight matrix

- Same as before:
$$w_{ij}^t = (1 - k_d)w_{ij}^{t-1} + \frac{1}{N}a_i^t a_j^t (1 - \delta_{ij})$$

- $V = N \times N$ weight matrix
 - modified Hebbian learning
 - associates current state with previous state

$$v_{ij}^{t} = (1 - k_d)v_{ij}^{t-1} + \frac{1}{N}a_i^t a_j^{t-1}$$

Model Details

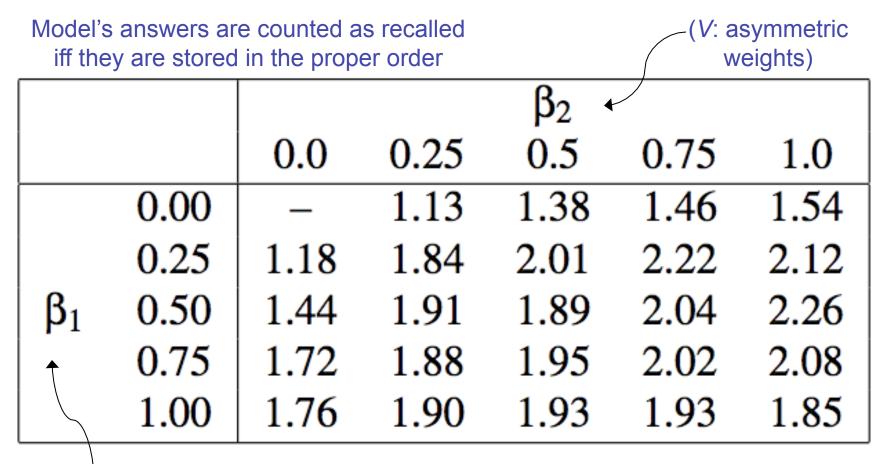
- modified input function
 - combine effects of W and V

$$h_i^t = \sum_j \left(\beta_1 w_{ij} a_j^t + \beta_2 v_{ij} a_j^{t-1}\right) - \theta_i^t$$

- other simplifications
 - non-probabilistic activation rule
 - simplified rules for θ

$$a_i^t = \begin{cases} +1 & h_i^t > 0\\ a_i^{t-1} & h_i^t = 0\\ -1 & h_i^t < 0 \end{cases}$$

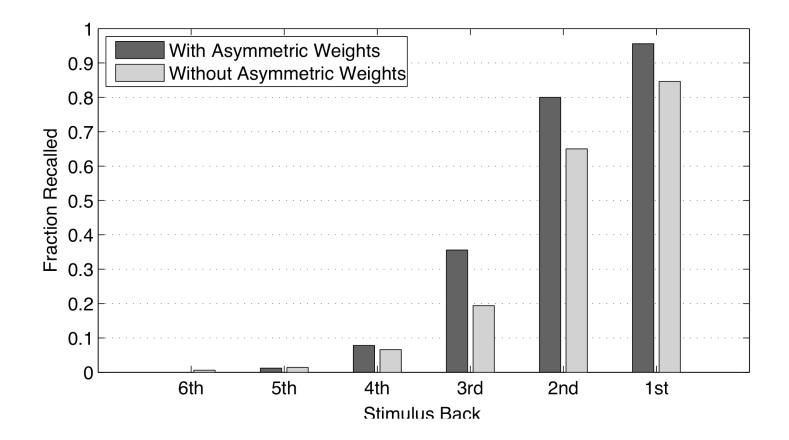
Number of stimuli recalled



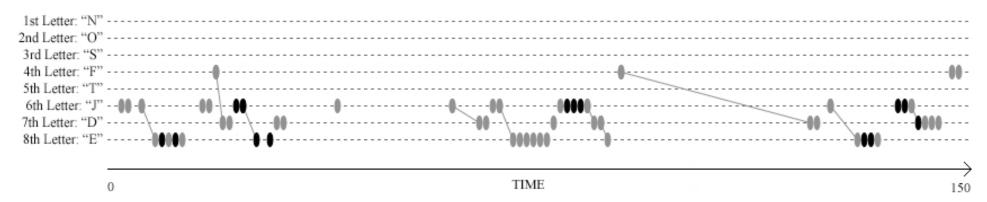
(Human subjects recalled 2.69 stimuli)

(*W*: symmetric weights)

Recall rates by position

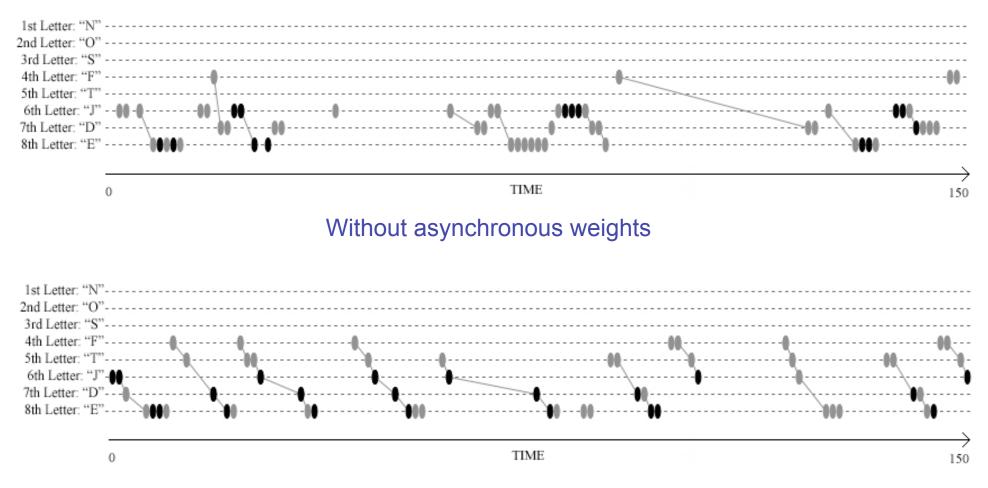


Ordering of similarity peaks



Without asynchronous weights

Ordering of similarity peaks



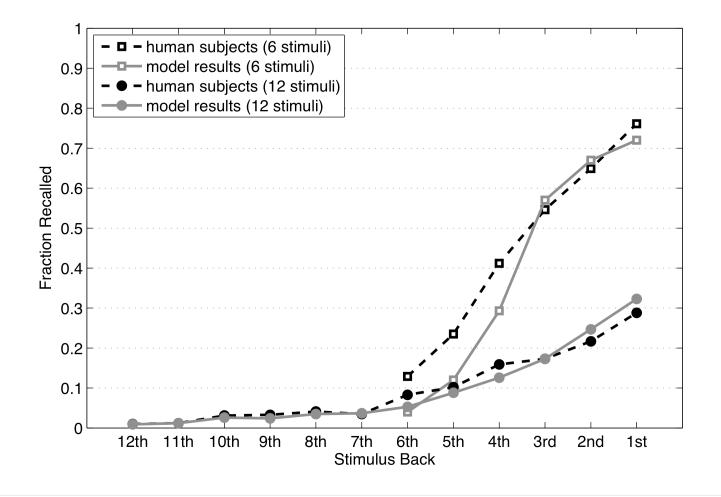
With asynchronous weights

Proportion of forward peak-to-peak transitions

					(weights)	
		β_2				
		0.0	0.25	0.5	0.75	1.0
β ₁	0.00	_	.81	.86	.93	.87
	0.25	.56	.71	.71	.83	.78
	0.50	.50	.70	.68	.79	.85
	0.75	.56	.65	.68	.75	.78
	1.00	.53	.61	.67	.74	.71

(symmetric weights)

Comparison of model to human data



Discussion

- model now recalls stimuli in order (roughly)
 - without loss of memory capacity
 - can still match human performance
- reminiscent of chaining
 - can't be "knocked out" of sequence
- simplicity
 - no complex architecture
 - no need to store the sequence in toto
 - sequence can be reconstructed from each pair of time steps