
Oscillatory Neural Network Models of 
Sequential Short-Term Memory 

June 15, 2010 

 with Mike Bunting 

Sylvester J, Reggia J, Weems S and Bunting M. 
“A temporally asymmetric Hebbian network for 
sequential working memory.” Int’l Conf. on 
Cognitive Modeling, August 2010. In press. 

Jim Reggia 
Comp. Sci., CASL 

Scott Weems 
CASL, Psychology 

Jared Sylvester 
Comp. Sci. 

1 



Short-Term Memory 

short-term memory refers to the human memory 
       system that retains information over brief time 
       intervals (on the order of seconds) 

characterized by substantial capacity limitations 
       in contrast to the relatively limitless capacity of 
       more permanent long-term memory: 

 approximately four items [Cowan et al, 2005] 
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Problem 

Need to improve foreign language comprehension 

Relevance 

Working memory is cri8cal for comprehension 

Goal 

Improve comprehension through working memory 
training 

Conceptual overview 
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TTO 3501: The Overview 

Modeling 
Computational 
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Goals for the Computational Modeling 

To identify individual difference variables that 
predict training benefits 
1.  Develop machine learning/classifiers to make  

  training effect predictions 
To explore how items are retained in working 

memory to better understand what the training is 
changing 
2.  Develop simple attractor models of short term   

  memory simulating human performance 
3.  Expand those models to include cognitive control  

  elements 
6 



Goals for the Computational Modeling 

To identify individual difference variables that 
predict training benefits 
1.  Develop machine learning/classifiers to make  

  training effect predictions 
To explore how items are retained in working 

memory to better understand what the training is 
changing 
2.  Develop simple attractor models of short term   

  memory simulating human performance 
3.  Expand those models to include cognitive control  

  elements 
7 



Neural Modeling: Goal 

•  Developing simple oscillatory models of short-term 
      memory with decay 

•  comparing the models’ performances to experimental  
          results from human subjects 

•    Examine the relative roles of decay and interference 
          in determining short-term memory capacity 

 by 
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Overview 

•  Background: 
•  behavioral data 
•  neural models of memory 

•  fixed attractor networks 
•  oscillatory networks  

•  Initial Model: Oscillatory Networks with Decay 
•  model properties 
•  comparison to behavioral data 

•  Updated Model: Temporally Asymmetric Weights 
•  model properties 
•  results 
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•  38 adult subjects; part of a larger study 
•  sequence of digits presented in rapid succession 

•  1 3 6 8 4 5 9 2 … (12 to 20 digits) 
•  2 per second presentation rate 
•  Not aware of when sequence will end 

•  subject expected to retain and repeat the most  
     recently seen 6 or 12 digits of the sequence 

•  digits entered by mouse clicks 
•   accuracy: 

•  number correctly recalled in correct position 
•  results averaged over twelve trials per subject 

The View from Experimental Psychology 

Behavioral Task: Running Memory Span 
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Behavioral Task 

The View from Experimental Psychology 
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STM = activity patterns  
LTM = connection weights W 

Attractor Neural Network Models of Memory 

network 
partial, noisy, or  
random pattern 

restored  
pattern 

Content-addressable memory: 
•  stored memory is attractor state of network  
•  usually involves fixed point attractors 
•  however, growing interest in oscillatory attractors 
    - brain highly oscillatory 
   - multiple patterns active 
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Fixed-Point Attractor Networks 

•  recurrent network structure 

•  content-addressable memory system 

•  store memory patterns by changing 
the weights wij on connections 
between nodes 

•  Hebbian learning used 
•  strengthen connections between 

co-active nodes 

 Hopfield networks, brain-state-in-a-box, and related models 
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Storage: Hebbian Learning 

•  Network:      N nodes, fully connected 
       node activity 

•  Memories: 

•  Storage: 

Memory storage is order independent! 

 (except wii = 0) 
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Recall 

•  Recall: randomly and asynchronously do the following 

•  traditionally terminates when there is no longer any 
change in the network state 

•  cause of failure to recall stored stimuli: 

 wij 

 interference 
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Simple Oscillatory Networks 

•  node thresholds θi change to 
induce oscillation 

•  initially during recall θi = 0 
•  when ai = +1 → θi rises 
•  when ai =  -1 → θi drops 
•  these changes make it harder 

as time passes for a node to 
remain in a single state 

Threshold Dynamics: 

⇒ network oscillates between stored memory patterns 

•  uses same method for storing patterns 
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Simple Oscillatory Model of STM 

•  the weights now stores memories that decay 

•  Storage: 

                      where kd is the decay rate  

•  Recall:  same as before 

 (except wii = 0) 

•  memory storage is no longer order independent! 
•  causes of failure to recall stored stimuli:  
          interference and decay 
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Stimuli 
•  network structure 

•  N = 35 nodes (7 rows and 5 columns) 

•  “arbitrary” stimuli used as patterns to be stored 
•  represented as letters for easy identification 

•  letters A – Z represented as ±1 patterns 

•  examples: 

= +1 
=  -1 
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Measuring Model’s Retention of Stimuli 

•  train network on sequences of stimuli of different lengths 
•  (4,8,12,16, or 20 - no repeated stimuli in a sequence) 

•  after storing each sequence: 
•  start network in a random initial state of activity 
•  run the network for 200 time steps as it oscillates 
•  at each time step measure model’s similarity to the 

memory patterns that served as stimuli 
•  record all patterns that are perfectly remembered 

•  results averaged over hundreds/thousands of trials 
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   Example 

•  8 stimuli: MLXNEFHB 

•  random initial state 
•  more recently stored 

stimuli are more 
strongly recalled 

 time 

 letter-specific 
     match 

 kd = 0.2 

Labeled as recalled: 
      E, H and B 

0 
1 
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Same Example: Recall Behavior 

•  three perfectly recalled patterns 
•  alternating appearance in network 

 match > 0.8 

 match = 1.0 
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Fraction of Stimuli Recalled vs. Stimulus Position  

•  recency effect observed with most decay rates kd 
•  as decay increases 

–  recent stimuli are more likely to be retained 
–  older stimuli are less likely to be retained 

(results averaged 
 over 1000 random 
 input sequences of 
 eight stimuli) 

0.1 

0.0 

0.5 

25 



Theoretical Analysis 
•  The non-linear, stochastic nature of model  
    makes it difficult to analyze mathematically. 
•  What value of kd will maximize the number  
    of stimuli that are recalled? 
•  Analysis: both interference and decay 
    contribute to losing stimuli from memory. 
•  Tradeoff: larger kd leads to more decay but  
    less interference. 
•  Result: intermediate values of kd are optimal.  
•  For our stimuli, a very rough value of  
    kd ≈ 0.22 is predicted to be optimal. 
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Stimuli Recalled with Different Decay Rates kd 

(results averaged 
 over 1000 random 
 input sequences) 

    less decay, 
more interference 

    more decay, 
 less interference 
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Comparison of Model Results to Behavioral Data 

 recall 12 

 recall 6 

 kd = 0.065 

 kd = 0.1 



Comments 

•  simple oscillatory model of short-term memory 
•  unlike past models, incorporates decay of stimuli 
•  demonstrates recency effect with non-zero decay rates 
•  both interference and decay prevent recall of stimuli 
•  can match behavioral data on different tasks simply 
     by varying the decay rate used by the model 
•  hypothesis:  
    Dynamic adjustments to activity decay rate may be an 
    important aspect of the human attention mechanisms  
    controlling forgetting. 
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Revised Model: 
Temporally Asymmetric Weights 

•  previous model does not recall in order 
•  human subjects do 
•  rectify this discrepancy 

•  approach: add a second set of weights 
•  similar, but temporally asymmetric 
•  link node activity now with previous activity 
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Model Details 

•  N = 35 binary nodes 
•  W = N x N weight matrix 

•  Same as before: 

•  V = N x N weight matrix 
•  modified Hebbian learning 
•  associates current state with previous state 
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Model Details 

•  modified input function 
•  combine effects of W and V 

•  other simplifications 
•  non-probabilistic 

activation rule 
•  simplified rules for θ 
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Number of stimuli recalled 

(Human subjects recalled 2.69 stimuli) 

(V: asymmetric 
weights) 

(W: symmetric 
weights) 

Model’s answers are counted as recalled 
iff they are stored in the proper order 
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Recall rates by position 
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Ordering of similarity peaks 

Without asynchronous weights 
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Ordering of similarity peaks 

Without asynchronous weights 

With asynchronous weights 
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Proportion of forward peak-to-peak 
transitions 

(asymmetric 
weights) 

(symmetric 
weights) 38 



Comparison of model to human data 
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Discussion 
•  model now recalls stimuli in order (roughly) 

•  without loss of memory capacity 
•  can still match human performance 

•  reminiscent of chaining 
•  can’t be “knocked out” of sequence 

•  simplicity 
•  no complex architecture 
•  no need to store the sequence in toto 

•  sequence can be reconstructed from each pair of 
time steps 
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