
Linear Models with Many Cores and CPUs: A
Stochastic Atomic Update Scheme

Edward Raff
Laboratory for Physical Sciences

edraff@lps.umd.edu
Booz Allen Hamilton

raff_edward@bah.com

Jared Sylvester
Laboratory for Physical Sciences

jared@lps.umd.edu
Booz Allen Hamilton

sylvester_jared@bah.com

Abstract—Linear models are fast to train, apply, and still state
of the art for sparse and high dimensional problems. Their com-
putational efficiency makes them difficult to parallelize, with the
standard multi-core approaches often diverging after more than 8
cores are added. We propose a Stochastic Atomic Update Scheme
(SAUS) for training linear models on many core machines. It is
simple to implement, reduces the number of divergent cases, and
obtains greater speedups by being able to effectively use an 80-
core server.

I. INTRODUCTION

The focus of our work is to train linear models with multiple
CPU cores. Given a dataset {x1, . . . , xn} of n datums, where
each xi ∈ RD has an associated label yi, we want to train
a simple linear model with respect to some loss function
`(·, ·) and regularization penalty Ω(·). The general form for
such linear models is given in Equation 1, where λ is the
regularization term.

arg min
w

1

n

n∑
i=1

`(wTxi, yi) + λ · Ω(w) (1)

This form covers a wide class of problems, such as logistic and
linear regression, and useful regularizers such as L1 and L2.
Such models are also effective and so considerable effort has
been spent creating highly optimized algorithms and packages
— such as the seminal LIBLINEAR [5]. But as hardware has
progressed, single-core clock speeds are plateauing and new
CPUs are instead being developed with more cores. Existing
training algorithms were not optimized with such multi-core
environments in mind.

Significant many-core resources are becoming available to
a wider audience every year, and continuing to scale linear
models to larger problems means we must develop efficient
multi-core solvers. For example, services like Amazon AWS
and Google’s Compute Cloud make high end virtual machines
available with up to 128 vCPUs.1 Unfortunately, it is not easy
to utilize such resources when seeking to train “bread-and-
butter” linear models such as Logistic Regression. Parallelized
implementations of such models are often algorithm specific,
and require understanding the limits of individual methods and
the particular hardware in use. Worse, the algorithms in use

1e.g., see https://aws.amazon.com/ec2/instance-types/ for Amazon’s
x1e.32xlarge instance

today can — counter-intuitively — be slowed down by the
addition of more cores. The performance characteristics are
often sensitive to the sparsity of the dataset, leading to per-
formance regression and sometimes model divergence. These
issues make practical use of these parallel methods difficult
for non-expert users and impede adoption. We tackle all of
these problems: increasing scalability, increasing reliability,
and reducing execution time reversals.

A parallel linear learning method should have two primary
goals: Model Quality (the algorithm produces the same final re-
sult, or one that performs nearly as well) and Training Efficiency
(the algorithm should scale as well as possible with increased
resources). At a minimum, training time when using P CPUs
should be less than or equal to using P −1 CPUs. In this work
we present a new stochastic method of sharing information
between local and global weight vectors, which we term the
Stochastic Atomic Update Scheme (SAUS). SAUS improves
upon both model quality and training efficiency, especially
when we consider the many-core scenario. Applying SAUS to
the Stochastic Dual Coordinate Ascent (SDCA) algorithm, we
show it is competitive with prior work when P ≤ 8, and has
superior accuracy and speed when P > 8. SAUS scales up to 80
cores without significant performance regressions, and it obtains
solutions with the same accuracy as the serial SDCA algorithm.
While these issues are not perfectly solved, we believe SAUS
represents the first approach that can be easily used by practi-
tioners on almost any system they would have access to today.

The rest of our paper is organized as follows. First we will
review related work in parallel linear models in section II.
We will introduce our contribution of a stochastic approach to
information sharing between local and global weight vectors in
section III, which underpins our new SAUS algorithm. We will
show experimental results in section IV that show it obtains
better speedup and efficiency as P increases. In section V we
will then analyze SAUS’s convergence properties under prior
frameworks, and perform analysis to show why SAUS obtains
superior speedups. Finally we will conclude in section VI.

II. RELATED WORK

The most common method for producing parallel linear
models is the “Wild” approach, where updates are done asyn-
chronously without any locking. This was introduced in the now

seminal “Hogwild!” paper, which first proposed and proved
general convergence rates for stochastic gradient decent in
this manner [13]. This asynchronous strategy has become the
dominant method in producing parallel linear models for a
single-machine system.

Many works have applied the Wild approach to specific
algorithms to create specialized convergence proofs and imple-
mentations [7, 9, 16, 21]. In most of these a statement about
the convergence rate as a function of the sparsity and update
frequency is developed. These provide theoretical backing that
also explains why models often diverge after many cores are
added, or when the feature set is dense.

In our work, we will be producing a parallel version of
the Stochastic Dual Coordinate Assent (SDCA) algorithm,
which covers a wide set of possible linear models. Our new
SAUS scheme does not require the SDCA algorithm. We
choose SDCA because it does not require the specification of
a learning rate η or of any decay rate. This makes it faster
in practical use, as the parameter search can be restricted to
simply the regularization penalty λ. Hsieh et al. [7] developed
the PASSCoDe framework for parallel implementations of the
SDCA algorithm [14]. In their work they use SDCA as the base
algorithm for parallelization, exploring a Wild, Atomic, and
Lock-based implementations. Using a single 10-core CPU, they
found the Wild algorithm to provide the best overall efficiency.
The Atomic approach, which performs atomic updates of the
weight vector by each thread, varied between being marginally
slower to significantly slower, depending on the sparsity of the
dataset. Their work will be our primary comparison point as it
represents the Wild approach applied specifically to the same
SDCA algorithm we consider.

While the wild update scheme has found popularity, it has
difficulty converging on multi-socket systems with multiple
CPUs available, each of which may have multiple cores. Zhang
and Hsieh [19] observed this on a dual-socket sever with
the PASSCoDe approach, and developed PASSCoDe-fix to
counteract this problem. This approach performs a conver-
gence check and line search at the end of each iteration to
ensure that the solution does not diverge, resulting in a “Semi-
Asynchronous” algorithm. Updates are performed wildly during
each epoch, synchronized, a line search is performed, and then
the cycle repeats. While PASSCoDe-fix was effective in fixing
the divergence issue, it further complicates the implementation
which increases compute time. In addition, is was tested only
up to 20 cores, and is specific to the SDCA algorithm. Since
SAUS can be applied to SDCA, PASSCoDe-fix can be used
in combination with SAUS, and so we will focus on the base
SDCA solvers to which PASSCoDe-fix might be applied. Our
SAUS approach, while applied in this paper to SDCA, is not
algorithm specific. SAUS also reduces compute time, and is
evaluated on a machine with four times as many cores.

Zhang et al. [20] proposed Hogwild++, which uses multiple
local weight vectors with regularly shared updates to avoid
performance regressions with SGD on multi-CPU systems.
However, it needs a new hyper-parameter to be tuned (which
depends on hardware and data) in addition to a step size η and

decay rate γ. Tunning of these additional hyper-parameters
consumes valuable CPU time, reducing the effective speedup
in practice and making it a poor comparison choice for our
work. Our approach instead uses a stochastic update policy and
introduces no new tunable hyper-parameters, and is applicable
to step-size free algorithms like SDCA so that the regularization
term λ is the only hyper-parameter.

III. STOCHASTIC ATOMIC UPDATES

We now introduce the design of our Stochastic Atomic
Update Scheme (SAUS). The goal of SAUS is to improve
scalability by reducing communication.

In the Atomic scheme, communication occurs via the Com-
pare and Swap (CAS) hardware instruction. This instruction
provides a safe way for a contenting thread to “swap” a
known old value with a desired new value, returning a boolean
indicating success. For each parameter that needs updating,
the CAS is run in a loop until success, which results in O(P)
communication cost for P competing threads.

The wild approach attempts to side-step this cost by perform-
ing unsafe (a.k.a, “wild”) updates of the shared weight vector.
But its performance still suffers from hidden communication
costs. Within a single CPU, the MESIF protocol is used
to ensure cache-coherence between cores transparently [15].
Between multiple CPUs, the QPI bus serves a similar purpose,
but with a latency two-orders of magnitude slower [10]. Both
of these processes run at the hardware level and cause commu-
nication overhead in the Wild approach, which is why it too has
reduced scaling as the number of cores and CPUs increases.

Algorithm 1 Stochastic Atomic Update Scheme

1: procedure UPDATE(Thread context p, weight vector w,
update z, Probability multiplier %)

2: rand ∼ U(0, 1)
3: wp ← weight vector local to thread p.
4: for each non-zero value zi ∈ z do
5: wp

i ← wp
i + zi

6: if rand ≤ %/|P | then
7: wi ← wi + wp

i . atomic update
8: wp

i ← 0

9: procedure ACCUMULATE(All thread contexts P)
10: for p ∈ [0, |P | − 1] do . in parallel
11: for i ∈ [pD/|P |, (p+1)D/|P |] do
12: wi ← wi + wp

i . non-atomic, but safe

To alleviate this communication overhead problem, we pro-
pose to stochastically update the weight vector. If we have P
total threads performing work, we will give each thread a 1/P
chance to do an Atomic update of the shared weight vector
w. If the thread fails this Bernoulli trial, we store the update
into a thread local weight vector wp. This local vector will
not generally be seen by other threads, and so updates to this
vector can be done using standard “Wild” updates. Because
no other thread will be accessing it, there are no thread safety
issues. This local weight vector is a critical component of

our SAUS approach. It allows each thread to maintain local
information, which will be periodically shared with the other
threads. Updating the shared weight vector w stochastically
then reduces the communication overhead.

This sharing of information is done in two primary stages.
We refer to the first as the update stage. When a thread wins
the Bernoulli trial to perform an atomic update of the main
weight vector w, the update will be done using the accumulated
values in wp but only for the values that have just been updated
locally. This means the stochastic update will not fully transfer
all information that is contained in the local weight vector.
This can be seen as a method that, after several trials, transfers
information from frequently used features from the working
threads to the global state.

Algorithm 2 Generic Learning Framework for SAUS

Require: Loss function `(·, ·)
1: w ← 0, %← 1
2: prevLoss ←∞, lowestLoss ←∞
3: for each Epoch do
4: Thread safe accumulator epochLoss← 0

. Below loop done in parallel with P threads
5: for Datum x with label y do
6: dot← (w +wp)Tx
7: epochLoss← epochLoss + `(dot, y)
8: Get gradient direction β
9: UPDATE(p, w, βx, %)

10: ACCUMULATE(P)
11: if epochLoss > 1.01 · prevLoss then
12: %← min(4 · %, |P |)
13: if epochLoss < lowestLoss then
14: %← max(%− 1, 1)

15: lowestLoss← min(lowestLoss, epochLoss)
16: prevLoss← epochLoss

The second stage we refer to as the accumulate stage. It
occurs at the end of each epoch, and runs through all local
vectors wp, accumulating them into the shared weight vector
w. Doing so ensures the global vector is completely up-to-date
at a regular frequency. This consolidation can be done without
atomic updates by temporarily allowing each thread to access
all local vectors w1...P , and each thread reading a disjoint
range of values to update into the shared w. These accumulate
and update steps are defined more explicitly in Algorithm 1.

We now describe how our SAUS approach can be applied to
any generic learning process. The UPDATE procedure includes
an argument for a probability multiplier %. This is included
to cover the rare case when the delay caused by stochastic
updates is too large, and causes divergence. By increasing the
probability % based on the training loss, we cheaply detect and
adjust for this situation. This in effect becomes an adaptive
mechanism to ensure convergence. In the worst cases, %⇒ P ,
in which case we degrade back to fully-atomic updates. In any
other case, we are still gaining a communication efficiency
over the classic approach. We emphasize this adaptive scheme

was only needed for one of our datasets to converge, but is
used in all of our experiments.

The details of the % updates and method is given in Al-
gorithm 2, with ACCUMULATE being called at the end of
each epoch, and UPDATE with each gradient. The only other
addition of our approach is in computing the dot product
between the weight vector w and the current feature vector
x. We instead have each thread include its own local weight
vector wp in a read-only fashion when computing dot products.
Doing so ensures that each thread is locally correct with regard
to all the gradient updates performed in that thread. Additional
information is then communicated solely through w, as done
via the UPDATE and ACCUMULATE procedures.

A. Special Bias Term Handing

As the last part of our SAUS approach, we note an optional
special-case handling for the bias term. We use this optional
handling in all of our tests. A special case for the bias term is
desirable as for most of our datasets, the bias term will be the
only feature present for every datum xi. This means the bias
term b will be missing considerably more updates to its value
than any other feature at any given time.

To remedy this situation, we can insist that the bias term be
the only feature updated at every iteration. However, naively
performing atomic updates of the bias term would cause
increased contention.

Since our implementation is in Java (as detailed more in
the next section), we make use of the DoubleAdder [8] to
implement the bias term for our model. This choice was done
primarily to improve convergence on the URL dataset, and can
optionally be replaced with a standard atomic double variable.
All of our results are shown with the use of the DoubleAdder
for the SAUS algorithm. We do not use the DoubleAdder for
the Atomic or Wild approaches because it is not a part of those
algorithms, and would not be in their spirit (all atomic or wild
updates, respectively).

The DoubleAdder reduces the contention for updating the
bias term. It works by keeping an array of atomic doubles, the
sum of which represents one double value of interest. When
a thread reads the DoubleAdder’s value, it atomically reads
and sums all values in the array. This requires no contention.
When writing updates, each thread indexes into a location in
the array of atomic doubles based on its identity, and attempts
to update the value atomically. When too many CAS operations
fail (indicating contention) the array is doubled in size. This
doubling occurs until contention stops, which is guaranteed
once the size is greater than or equal to that of the number of
processors P .

We emphasize that despite the bias term always being
updated, it may not degrade to creating the full array of P
double values. Each thread will be performing work with a
variable number of non-zero values that they must store locally
and have workloads that have inconsistent timing. This means
while each thread will updated the bias b, not all threads will
be updating b at the same time.

The DoubleAdder thus represents a trade off: it reduces
update contention at a cost of increased memory usage, read
time, and cache inefficiency. For this reason it is not prac-
tical to make all coefficients DoubleAdder objects, and our
preliminary testing showed this to be slower than the standard
single threaded implementation. Even if each DoubleAdder
was under no contention, storing the coefficients as an array of
DoubleAdders means the memory cost doubles compared to
the array of atomic doubles due to each DoubleAdder getting
the object header overhead for the object itself, as well as the
array object each DoubleAdder contains. This in turn causes
numerous cache misses due to memory reference indirections.

The use of the DoubleAdder for the bias term is a strategic
choice, based on the fact that the bias term is always present
and thus always updated. This makes the bias term necessarily
the highest contention coefficient, and thus appropriate to make
the trade-off of the DoubleAdder for that specific component.

IV. EVALUATION AND EXPERIMENTS

To evaluate our new SAUS for parallel training of linear
models, we will apply them to the SDCA algorithm for training
Elastic-Net regularized logistic regression. We choose Logistic
Regression because of its widespread use, and use Elastic-Net
regularization because of its robustness to high-dimensional
settings, a common case where logistic regression still pro-
vides state-of-the-art performance [11]. This means `(s, y) =
log (1 + exp(−yi · s)) and Ω(w) = 1

4 ||w||
2
2 + 1

2 ||w||1. For all
experiments we set λ = n−1 for reproducibility and simplicity.
In extended testing we have found that our method continues
to work for various values of λ.

In our experiments we will look at results for eight different
datasets detailed in Table I. While most prior work focuses on
only two or three (sparse) corpora, we test our approach on a
wide array of datasets. This includes small datasets (e.g. a9a)
and dense (e.g. Epsilon) ones, as well as massive and sparse
datasets like KDD 2012. Testing on this wide array helps build
confidence that our approach is generally applicable and needs
less fine-tuning, meaning it could be used by more novice users.
All datasets were downloaded from the LIBSVM site [2]. Since
not every dataset we evaluate has a standard testing set, we
will use a random 90/10 split for training and testing. The same
split will be used for each approach for every value of P tested.

TABLE I: Summary of datasets used in experiments, with the
number of rows N , the number of features D, and the average
number of non-zero features per row D. The last column shows
the average percent of non-zero values in the corpus.

Dataset N D D density (%)

Epsilon 400,000 2,000 2,000.0 100.0
a9a 22,696 123 13.9 11.8
Webspam trigrams 350,000 16,609,143 3,727.7 0.0224
Criteo Kaggle 2014 45,840,617 1,000,000 39.0 0.00390
Avazu 40,428,967 1,000,000 15.0 0.00150
URL Combined 2,396,130 3,231,961 115.6 0.00358
KDD 2010 19,264,097 29,890,095 29.4 0.0000984
KDD 2012 149,639,105 54,686,452 11.0 0.0000201

There are two general qualities we want to evaluate each
parallel training approach for: quality of solution and par-
allel speedup. Solution quality can be measured by looking
at changes in accuracy with respect to the standard SDCA
algorithm trained with a single core. When a model trained
with multiple-cores has ≥ 2% drop in accuracy compared to
the standard SDCA algorithm, we consider it a model failure.
Parallel speedup is a more concrete property. It is defined as
the runtime required for the single-threaded SDCA algorithm
divided by the runtime for the parallel approach under question.

To compare the SAUS, Wild, and Atomic approaches to
training a parallel model via SDCA, we implement all three
approaches in Java using JSAT [12]. Comparing with pre-
existing C/C++ implementations of single-threaded SDCA, we
found no significant performance degradations. Implementing
all algorithms in the same framework and language allows us
to meaningfully compare speedup results. To test in the many-
core regime, all experiments were done on a single machine
with 4 Intel XEON E7-8870v4 CPUs @ 2.10 GHz, 2 TB
of RAM, and 40 TB of SSD storage. Hyper-threading was
disabled for all tests. This machines allows us to test with up to
80 total CPU cores across 4 processors. For tests with P ≤ 80,
we pin the process to use the minimum number of CPUs,
ensuring that no extraneous cross-CPU communication occurs
over the QPI interface. We will use this many-core machine and
the aforementioned metrics to evaluate three approaches: our
new SAUS algorithm, the Wild-PASSCoDe, and the Atomic-
PASSCoDe [7].

A. Model Quality

We first look at the model quality results. For any parallel
training approach to be used in practice it needs to reliably
produce models of quality comparable to that of the serial
approach. We plot the final accuracy after convergence as a
function of the number of cores used for the SAUS, Wild, and
Atomic approaches. This is shown in Figure 1, where the solid
black line indicates the accuracy of the serial SDCA algorithm.
The x-axis is shared across figures and is log spaced, showing
performance for P ∈ {2, 4, 8, 16, 32, 64, 80} cores.

The SAUS, Wild, and Atomic approaches all converge to
models with nearly identical accuracy on three datasets: Avazu,
webspam, and KDD12. However, as we have discussed, the
approaches have performance that is both hardware and dataset
sensitive. We see failures for the Atomic and Wild approaches
on datasets with many different properties.

On the epsilon dataset, which is 100% dense, we see the
Atomic approach begin to fail after 32 cores are in use, and
dramatically diverge to random guessing when all 80 cores
are in use. The Wild approach also begins to degrade on this
dataset after 64 cores. The a9a dataset is also interesting as our
smallest corpus. Due to its limited size, we would not expect
any approach to obtain significant speedups. Yet we see the
Wild approach begin to fail after just 4 cores are in use, with
the Atomic approach also becoming unstable after 32 cores
are in play.

101 102
0.85

0.86

0.87

0.88

0.89

0.9

A
cc

ur
ac

y
Avazu

SAUS
Atomic

Wild
Single-Core

101 102

0.5

0.6

0.7

0.8

0.9

epsilon

101 102
0.95

0.96

0.97

0.98

0.99

A
cc

ur
ac

y

webspam

101 102
0.4

0.5

0.6

0.7

0.8

a9a

101 102
0.7

0.75

0.8

0.85

A
cc

ur
ac

y

Criteo

101 102
0.9

0.92

0.94

0.96

0.98

1

KDD12

101 102
0.2

0.4

0.6

0.8

Cores

A
cc

ur
ac

y

KDD 10

101 102

0.7

0.8

0.9

1

Cores

URL

Fig. 1: Accuracy of final model (y-axis, scaled differently for
each figure) as a function of the number of CPU cores used
(x-axis, scale shared for each figure).

The divergence issues of the Atomic and Wild approaches
are not limited to the datasets which are difficult for parallelism
such as epsilon (due to its density) and a9a (due to its diminu-
tive size). Both Atomic and Wild also suffer quality failures
on large and sparse datasets, which is the ideal scenario for
training parallel linear models. On Criteo, we see the Atomic
approach degrading after 16 cores enter use. On KDD 2010,
we see the Wild approach failing after just 2 cores enter use.

The only case where we see a model quality failure for
SAUS is with the URL dataset, where it fails at the extreme
of 80 cores. This is also the most challenging dataset for all

approaches, likely due to a mix of features that are frequently
non-zero and features that are rarely used — a fact hidden
from view by the overall sparsity of the corpus. The Wild
approach has greater model divergence on this corpus than
SAUS, failing after just 8 cores. While the Atomic approach
manages to have no failures on this corpus, we will see in
subsection IV-B that it achieves this by degrading down to
single-threaded performance, rendering it no faster than the
serial approach. While not a failure by our accuracy definition,
it is a failure in parallel speedup.

Overall, SAUS has only one model failure at 80 cores on
the most challenging dataset, URL. The Wild approach has
16 failures, and the Atomic approach seven. SAUS’s superior
model quality can also be measured with a Wilcoxon signed
ranks test [17]. The Wilcoxon test is preferable to the more
common t-test and Friedman test [1, 4], and we use the table
provided in [18] for the p-values. This is a pairwise test done
across each dataset for each number of CPU cores tested. For
both SAUS vs Atomic updates and SAUS vs Wild updates, we
obtain p < 0.001 — a statistically significant result.

A Potential Regularizing Effect of SAUS: In all cases we
used the same regularization parameter λ for each dataset,
and used the same random split for the training and testing
sets. Despite this, we notice that SAUS consistently has a
slightly improved accuracy on a9a and KDD 2010, and slightly
degraded accuracy on Webspam. We suspect that the SAUS
update scheme introduces an implicit regularization effect. Sim-
ilarly, Hsieh et al. [7] showed that the Wild update approach to
SDCA, when solving Equation 1 with Ω(w) = ||w||22, actually
finds the solution to a perturbed regularizer Ω̃(w) = Ω(w+ ε).
This would explain the slight accuracy difference, despite all
implementations sharing the same code and usually obtaining
results that are identical to that of the serial SDCA algorithm.
This also occurs, albeit inconsistently, with both the Atomic
and Wild approaches on a9a, KDD 2010, and URL datasets.

B. Parallel Speedup

We have now demonstrated that SAUS produces, to a statis-
tically significant degree, the highest quality model solutions
across several datasets for any number of cores P ∈ [2, 80].
The next important question is how much faster the SAUS
approach is compared to the serial case, and compared to
the pre-existing Wild and Atomic approaches. Similar to the
previous section, we plot in Figure 2 the speedup for each
dataset as a function of the number of cores P used.

The epsilon and a9a datasets are worst-case scenarios for
parallel linear models. The a9a dataset is simply too small
for there to be much potential speedup. Our SAUS approach
achieved the highest speedup at a factor of 3x when 8 cores
were used, but all three approaches degrade to single-core
performance when 80 cores are used. On epsilon, the Wild
approach performed best — reaching a 7x speedup, where our
SAUS approach could only obtain 3x. The Atomic approach
has a misleading “speedup” at 80 cores because the model
diverged to random guessing causing early termination. While
SAUS dose not perform well in these cases, they are also

101 102

2

4

6

8

10

Sp
ee

du
p

Avazu

Atomic
Wild

SAUS

101 102
0

2

4

6

8

10

epsilon

101 102
0

2

4

6

8

10

Sp
ee

du
p

webspam

101 102

1

2

3

4

5

a9a

101 102
0

5

10

15

Sp
ee

du
p

Criteo

101 102
0

2

4

6

8

10

KDD 2012

101 102
0

2

4

6

8

10

Cores

Sp
ee

du
p

KDD 2010

101 102
0

2

4

6

8

10

Cores

URL

Fig. 2: Speedup of each approach as a function of the number
of CPU cores used.

uniquely ill-suited for parallel computation. More important is
that, as discussed in subsection IV-A, SAUS is the only method
that has zero model quality failures on these two datasets while
also still obtaining a speedup.

For all other datasets, when P ∈ [2, 8] cores, we tend
to see the SAUS and Wild approaches having competitive
performance. On some datasets like webspam and KDD 2010,
the Wild approach has slightly better speedups. On others like
Criteo and Avazu, the SAUS approach performs slightly better.

This begins to change significantly as we move past 8 cores
and enter the many-core scenarios. On most datasets, we see
Wild’s performance plateau in terms of speedup. The only

dataset where the Wild approach continues to see a speed
improvement is on the webspam corpus, reaching a final
speedup of 5.7x at 80-cores, but still being out performed by
the SAUS approach which achieves 7.1x. The Atomic approach
has a similar plateauing, but usually has worse performance
due to the overhead of constant atomic communication. The
Atomic approach has an additional exception on the Criteo
dataset, where its speedup “improves” after 32 cores are in
use. However this is a false speedup, and as can be seen in
Figure 1 this is actually caused by a degradation in the model
quality leading to early convergence.

We emphasize that the plateau for the Wild approach at
P = 8 is not because of inter-CPU communication (i.e., the
QPI buss). Each CPU in our system has 20 cores and processes
are pinned to the minimum number of needed CPUs. If QPI was
the culprit, then we should have continued to see improvement
at P = 16, but this does not happen. It appears passing 8 cores
is when the communication overhead of the MESIF protocol
between cores starts to dominate.

As mentioned in the previous section, the URL dataset is the
most challenging due to its unusual distribution of non-zero
values. The SAUS approach fails in terms of model quality &
accuracy only once 80 cores are used, causing the false speedup
spike. (The Wild approach shows the same behavior when P =
80.) While the Atomic approach has converged to a model with
the same accuracy as the serial SDCA algorithm, its runtime
performance has also degraded to that of the serial algorithm
once 16 cores were in use. Because the Wild approach also
has model quality failures after 4-cores are used, the SAUS
approach is the only algorithm that achieved both a speedup
and high quality solution when P > 4, topping out at a 5.0x
speedup at 64 cores. While this isn’t dramatic in terms of an
ideal linear speedup with P , the SAUS approach is the only
method to obtain any speedup and an accurate solution, making
it the only realistically usable solution for P ∈ [8, 64] cores.

When we look at the other datasets, we also see that the
SAUS approach does not tend to plateau as more cores are
added. Indeed it achieves the highest 80-core speedups on criteo,
KDD 2010, KDD 2012, webspam, and avazu. The specific
results on the maximum speedup achieved without any model
accuracy failures are presented in Table II, where X indicates
the speedup over the serial SDCA algorithm, and P indicates
the number of processors used to achieve that speedup.

Here it becomes clear that SAUS approach is the only method
to consistently benefit from using more than 8 cores. Being
able to effectively use all available cores is important for more
than just efficiency grounds: it frees the practitioner to use
as many computational resources as they have on a problem
without worry. Even when the Wild and Atomic approaches
occasionally use more than 8 cores, they still don’t achieve
the same speedups that SAUS does. The only exception is the
epsilon dataset, where the Wild approach obtains a considerably
better speedup than the SAUS or Atomic methods, but this
dataset is dense, making it an exceptional case. Looking at
the median results across datasets, SAUS is able to scale to
10x as many CPU cores and is 2.4x times faster than the Wild

TABLE II: The best speedup results X for SAUS, Wild, and
Atomic updates, and the number of cores P used to achieve
that speedup. Best results shown in bold.

SAUS Wild Atomic

Dataset X P X P X P

Epsilon 2.97 80 7.27 80 2.92 8
a9a 3.03 8 1.94 2 1.75 8
Webspam 7.12 80 5.69 80 6.51 80
Criteo 7.36 80 3.25 64 2.59 8
Avazu 7.53 64 3.09 8 2.87 8
URL 5.03 64 2.11 4 1.79 8
KDD 2010 8.64 80 4.27 8 5.23 80
KDD 2012 8.14 80 1.77 4 2.81 16

Median 7.45 80 3.17 8 2.87 8

approach and 2.6x faster than the Atomic version.

V. DISCUSSION

Given these results we have shown that the SAUS approach
is better able to use the large number of cores available on
modern systems. We now discuss why SAUS is able to achieve
these improvements over prior approaches. First, our SAUS
algorithm can also be shown to converge with SDCA using
the same framework developed in [7]. From that mathematical
perspective there is no obvious reason why SAUS should
perform better. Instead we find it informative to also look at the
communication costs. In examining the nature of our stochastic
updates we can show that the SAUS approach has naturally
limited communication overhead. Using this result, we then
show analytically that its performance is independent of the
number of cores used.

A. SAUS Convergence

We first expound upon how SAUS can be seen to converge
to the solution from the same mathematical perspective given
in Hsieh et al. [7]. Their work, like others, require simplifying
assumptions on the communication in order to reason about
in an analytic manner. By showing how SAUS fits in and
stretches the assumptions of their framework, we obtain better
understanding about where improvements in modeling could
be obtained or where the theory may be overly conservative
in its assumptions.

Regarding the convergence properties of SAUS, we remind
the reader of the probability multiplier % that adaptively
increases as necessary to ensure convergence. As % ⇒ P ,
SAUS approaches the original PASSCoDe-Atomic behavior.
In the extreme, % = P and SAUS degrades into the standard
PASSCoDe-Atomic algorithm, and thus converges under the
exact same logic that was presented in Hsieh et al. [7]. This is
the simplest case in which we converge in the same framework,
but is not informative to a deeper understanding.

Irrespective of the existence of %, we can analyze the
convergence of SAUS for SDCA using the same assumptions
and proof provided for PASSCoDe-Atomic. Hsieh et al. de-
fine the current “accurate” weight vector at time step j as
wj =

∑n
i=1α

j
ixi, where αj is the vector of coefficients for

each dataum. Simultaneously, ŵj represents the current model
weight vector that exists in memory. Because not all threads will
have written their updates to ŵj , its value will be inaccurate.
For their proof, they assume that all updates before the (j−τ)-
th iteration have been written into ŵj . Their convergence proof
then relies on the assumption that(

6τ(τ + 1)2eM
)
/
√
n ≤ 1 (2)

where M is a data dependent constant defined in [7].
We note critically that no bound, expectation, or intuition

on the value of τ is given, it is simply assumed that it will be
small enough to satisfy the bound. Given that we frequently
see PASSCoDe-Atomic (and Wild) diverge in our testing, we
know this assumption does not always hold in practice. Most all
convergence proofs we are aware of rely on similar assumptions
that updates will be “fast enough” in some sense [9, 16, 21],
which makes the proofs dependent on hardware and dataset
combinations. Given that no statements are given about the
delay τ , we could argue that SAUS converges under the same
assumptions at this point. This would be reasonable given that
SAUS converges to a high quality model more frequently than
PASSCoDe-Atomic in our tests. Nevertheless, we will attempt
to provide further insights into the expected value of τ with
SAUS.

For SAUS, we can use the global shared weight vector w for
the same purpose as ŵj . The sum of weight vectors in thread
local contexts w̃ =

∑
∀p∈P w

p then represents all (j − τ)
updates that have not yet been written to the global weight
vector. We can then say τ will be distributed similarly to the
rate at which non-zero coefficients from w̃ are transfered into
ŵj . Because we expect only one thread to be performing an
update of ŵj at a time (see subsection V-B), we can assume
τ will not be any larger than this value in expectation. If this
assumption where not true, we would see % ⇒ P , at which
point we converge again under the same trivial assumptions
we discussed at the beginning of this section.

This allows us to infer a worst case value for τ . If fd is
the frequency at which the d’th feature was non-zero in the
dataset, fM = arg mind∈[1,D] fd, and each thread has an 1/|P |
chance of transferring its information for its local wp into
ŵj , we expect τ . n|P |/fM . This is essentially the pessimistic
assumption that τ follows the average update rate of the most
infrequently seen feature and is updated for all contexts.

A more complicated analysis could be done to take into
account that we are working with an L1 penalty on the regular-
izer which will induce sparsity in the weight coefficients. As
such τ could be tightened by replacing fM with the frequency
of the least frequent feature d that its expected to have a non-
zero coefficient in ŵj

d.
In practical use, the worst case τ ≈ n|P |/fM can’t hold all

the time. fM can only have an impact on τ when the feature
has occurred once, and we are waiting for a 2nd occurrence
to move the information from w̃M into ŵj

M .
Toward our understanding of the convergence framework, it

would appear that our worst case analysis would general place
τ on the order of O(n), which would imply the bound (2) is

likely to fail. Because we see better convergence of SAUS than
PASSCoDe, this would seem to imply that the bound is too
pessimistic in practice. Our intuition is that the analysis fails
to capture that the value of τ will vary of the execution of
the program, and that not all features are equally informative
to the solution. Beyond the scope of our work, an improved
framework might take into account multiple τ for each feature
and consider the average value of each coordinate-wise τ to
better capture the range of convergence.

Ultimately, our SAUS approach has only one convergence
failure in our testing, compared to seven for PASSCoDe-Atomic.
As such we do not believe the theoretical frameworks fully
capture the intricacies of convergence on modern hardware
when many cores, CPUs, caches, and other hardware intricacies
begin to interact.

B. Expected Number of Threads per Update

We first show that we will expect only a constant number
of threads to be attempting an update at a given time. This is
under the light assumption that all processors P are operating
in a synchronous manner with each thread simultaneously
performing updates at the same rate.

Under this assumption, we can view the choice of performing
a stochastic update as a Binomial distribution (3), for n trials
with probability of success p.

B(n, p) =

(
n

k

)
pk (1− p)n−k (3)

The mean of this is E[B(n, p)] = np. In our scenario, the n
trials corresponds to the P processors, and the probability of
success is defined as P−1. Thus we can see that the expected
number of threads performing an update is E[B(P, P−1)] =
PP−1 = 1.

A stronger statement can be made with Chernoff’s
upper-tail bound [3]. Given random variables Zi such that
Zi ∈ [0, 1], we have the bound P (

∑n
i=1 Zi ≥ (1 + ε)µ) ≤

exp (−µ ((1 + ε) log(1 + ε)− ε)). In our application, the ex-
pected sum µ = 1 and Z ∼ B(P, P−1). Thus right-hand side
simplifies to ≤ exp (−(1 + ε) log(1 + ε) + ε). This gives us a
probabilistic bound on the number of threads attempting to
perform a simultaneous update. Choosing a value of ε = 4
tells us that there is a less than 1.7% chance of five threads
performing a simultaneous update, regardless of the number
of processors P in the system.

C. Analytic Efficiency

We use this result of an expected constant number of threads
per update to derive the efficiency of the SAUS algorithm. The
efficiency E ∈ (0, 1] describes its use of parallel resources,
and is defined as the speedup of the algorithm divided by
the number of processors P used. When E = 1, we obtain
linear speedup with the number of cores P . As the parallel
algorithm becomes slower E will trend toward 0. By describing
efficiency via the explicit costs and communication overheads
in each algorithm, we can derive analytic equations describing
the efficiency of each approach. This is done using the same

framework and notation introduced by Grama et al. [6] in
their Isoefficiency work, which describes the costs of parallel
algorithms in big-O notation (which we will assume implicitly
in this section for legibility). In particular, Grama et al. show
that the efficiency can be described as E = 1/(1 + To/T1),
where To describes the total overhead of the parallel algorithm,
and T1 is the work for the single-threaded algorithm. If Tp is
the total work done per thread in the parallel case, the three
are connected via Tp = (T1 + To)/P .

All of our models have the same T1 = IND, where I is
the number of epochs performed. For the Atomic approach,
the communication overhead To for P threads performing an
update is O(P) due to the CAS loop. This cost occurs on
every update of every epoch. Thus the overhead To for the
Atomic approach is TAtomic

o = PIND. In the case of the Wild
approach, there is no explicit communication costs. This would
imply that Twild

o = 0 , but this ignores the communication
that occurs via the hardware. For this reason we don’t try
to characterize its behavior, as it will be a function of the
specific hardware instantiation. Based on the results we see
in section IV, it would be reasonable to argue that the Wild
approach has the same asymptotic To term as the Atomic
approach, but has differing constants. We draw this conclusion
by noting that the Wild and Atomic speedup curves tend to
exhibit the same shape, but offset from one-another.

In the case of SAUS, we have just shown that the expected
number of threads performing an update at a time is 1, and
with a high probability will be a small constant number. This
disappears in the big-O notation, and so the majority of commu-
nication overhead compared to the serial algorithm comes from
the Accumulation step. The accumulation step is run without
communication on disjoint subsets of the weight vector w, and
so would contribute O(DI) to the overhead term (adding each
feature once per epoch). Thus we can say that T SAUS

o = DI .
Now we can compute the efficiency via E = 1

1+To/T1
[6].

This gives us:

EAtomic =
1

1 +
TAtomic
o

T1

=
1

1 + PIND
IND

=
1

1 + P
(4)

ESAUS =
1

1 +
T SAUS
o

T1

=
1

1 + ID
IND

=
1

1 + D
D

1
N

(5)

For the Atomic case in (4), we see that the efficiency is
a function dependent on the number of processors P in the
system. As we keep the problem size constant, we expect
efficiency to decrease with more cores.

Our new SAUS approach reveals an efficiency in (5) that is
independent of the number of cores P . Instead it depends on the
inverse sparsity divided by the problem size. The inverse spar-
sity comes from the Accumulate step which has low constant
overhead, and we can see SAUS’s largest speedups come from
sparse datasets like KDD 2012. The 1/N term also benefits
SAUS, as we are interested in parallel training specifically when
N is large and thus would take too long with a single core.

Overall, our results back this theoretical analysis. Equation 5
tells us that the efficiency of our method should be independent

of the number of processors P , which explains why we see
superior speedup compared to the prior approaches as more
cores are added. This analysis assumes that the % term in SAUS
equals one, which does not happen for the URL dataset as more
cores are added. This is a limitation of our current analysis, but
the addition has the benefit of degrading back to the Atomic
approach for difficult datasets. Being able to describe when %
changes and incorporating it into this efficiency analysis is an
important direction for future work.

VI. CONCLUSION

In this paper we have presented SAUS, a new approach to
training linear models in parallel that stochastically updates
the shared weight vector using safe atomic updates. SAUS
provides better model stability compared to both the prior Wild
and Atomic updating approaches, while also scaling better
as the number of CPU cores increases past 8 and up to 80.
This allows SAUS to work effectively on the wide array of
massively parallel systems available today, without requiring
significant user expertise on the potential pitfalls of parallel
linear model training. Further, we have provided theoretical
analysis to explain why SAUS provides better performance in
the many-core scenario.

REFERENCES

[1] A. Benavoli, G. Corani, and F. Mangili. Should We Re-
ally Use Post-Hoc Tests Based on Mean-Ranks? Journal
of Machine Learning Research, 17(5):1–10, 2016.

[2] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on Intel-
ligent Systems and Technology, 2(3), Apr. 2011. ISSN:
21576904.

[3] H. Chernoff. A Measure of Asymptotic Efficiency for
Tests of a Hypothesis Based on the sum of Observations.
The Annals of Mathematical Statistics, 23(4):493–507,
1952. ISSN: 00034851.

[4] J. Demšar. Statistical Comparisons of Classifiers over
Multiple Data Sets. Journal of Machine Learning Re-
search, 7:1–30, Dec. 2006. ISSN: 1532-4435.

[5] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. LIBLINEAR: A Library for Large Linear Clas-
sification. The Journal of Machine Learning Research,
9:1871–1874, 2008.

[6] A. Y. Grama, A. Gupta, and V. Kumar. Isoefficiency:
Measuring the Scalability of Parallel Algorithms and
Architectures. IEEE Parallel Distrib. Technol., 1(3):12–
21, Aug. 1993. ISSN: 1063-6552.

[7] C.-J. Hsieh, H.-F. Yu, and I. S. Dhillon. PASSCoDe: Par-
allel Asynchronous Stochastic Dual Co-ordinate Descent.
In Proceedings of the 32Nd International Conference on
International Conference on Machine Learning - Volume
37, ICML’15, pages 2370–2379. JMLR.org, 2015.

[8] D. Lea. DoubleAdder, 2018. URL: https://docs.oracle.
com/ javase /8 /docs /api / java /util / concurrent / atomic /
DoubleAdder.html.

[9] R. Leblond, F. Pedregosa, and S. Lacoste-Julien.
ASAGA: Asynchronous Parallel SAGA. In A. Singh and
J. Zhu, editors, Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, vol-
ume 54 of Proceedings of Machine Learning Research,
pages 46–54, Fort Lauderdale, FL, USA. PMLR, 2017.

[10] D. Molka, D. Hackenberg, R. Schone, and W. E. Nagel.
Cache Coherence Protocol and Memory Performance of
the Intel Haswell-EP Architecture. In 2015 44th Inter-
national Conference on Parallel Processing, pages 739–
748. IEEE, Sept. 2015. ISBN: 978-1-4673-7587-0.

[11] A. Y. Ng. Feature selection, L1 vs. L2 regularization,
and rotational invariance. Twenty-first international con-
ference on Machine learning - ICML ’04:78, 2004.

[12] E. Raff. JSAT: Java Statistical Analysis Tool, a Library
for Machine Learning. Journal of Machine Learning
Research, 18(23):1–5, 2017.

[13] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A
Lock-Free Approach to Parallelizing Stochastic Gradient
Descent. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 24, pages 693–
701. Curran Associates, Inc., 2011.

[14] S. Shalev-Shwartz and T. Zhang. Stochastic Dual Coordi-
nate Ascent Methods for Regularized Loss Minimization.
Journal ofMachine Learning Research, 14:567–599, Sept.
2012.

[15] M. E. Thomadakis. The architecture of the Nehalem
processor and Nehalem-EP SMP platforms. Resource,
3(2), 2011.

[16] K. Tran, S. Hosseini, L. Xiao, T. Finley, and M. Bilenko.
Scaling Up Stochastic Dual Coordinate Ascent. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
- KDD ’15, pages 1185–1194, New York, New York,
USA. ACM Press, Aug. 2015. ISBN: 9781450336642.

[17] F. Wilcoxon. Individual Comparisons by Ranking Meth-
ods. Biometrics Bulletin, 1(6):80, Dec. 1945. ISSN:
00994987.

[18] J. H. Zar. Biostatistical Analysis. Prentice Hall, 1999.
ISBN: 9780130815422.

[19] H. Zhang and C.-j. Hsieh. Fixing the Convergence
Problems in Parallel Asynchronous Dual Coordinate
Descent. In IEEE International Conference on Data
Mining (ICDM), 2016.

[20] H. Zhang, C.-J. Hsieh, and V. Akella. HogWild++:
A New Mechanism for Decentralized Asynchronous
Stochastic Gradient Descent. In IEEE International Con-
ference on Data Mining (ICDM). ICDM, 2016.

[21] S.-Y. Zhao and W.-J. Li. Fast Asynchronous Parallel
Stochastic Gradient Descent: A Lock-free Approach with
Convergence Guarantee. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, AAAI’16,
pages 2379–2385. AAAI Press, 2016.

