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a b s t r a c t

There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a sym-
bolic, top-down approach vs. a neural, bottom-up approach to engineering intelligentmachine behaviors.
While neurocomputationalmethods excel at lower-level cognitive tasks (incremental learning for pattern
classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are
largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive prob-
lem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards ad-
dressing this limitation by developing a purely neural framework named galis. Our goal in this work is to
integrate top-down (non-symbolic) control of a neural network systemwith more traditional bottom-up
neural computations. galis is based on attractor networks that can be ‘‘programmed’’ with temporal se-
quences of hand-crafted instructions that control problem solving by gating the activity retention of, com-
munication between, and learning done by other neural networks. We demonstrate the effectiveness of
this approach by showing that it can be applied successfully to solve sequential card matching problems,
using both human performance and a top-down symbolic algorithm as experimental controls. Solving
this kind of problemmakes use of top-down attention control and the binding together of visual features
in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not
only be instructed on how to solve card matching problems successfully, but its performance also qual-
itatively (and sometimes quantitatively) matches the performance of both human subjects that we had
perform the same task and the top-down symbolic algorithm thatwe used as an experimental control.We
conclude that the core principles underlying the galis framework provide a promising approach to engi-
neering purely neurocomputational systems for problem-solving tasks that in people require higher-level
cognitive functions.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Most artificial intelligence (AI) and cognitive modeling systems
fall into one of two general groups: systems that take a sym-
bolic, top-down approach, and those that adopt a neural, bottom-
up approach. The divide between these two strategies is both
long-standing and, at times, quite contentious. This conflict is re-
grettable because the two different strategies are in many ways
complementary rather than competitive: each of the two ap-
proaches has its own relative strengths and weaknesses. For
example, while neural systems excel at problems that involve
patternmatching, incremental learning, low level control, fault tol-
erance, and/or processing noisy data, they are less adept at han-
dling higher cognitive functions such as goal-directed reasoning,
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meta-cognition, and planning. Top-down symbolic methods are
largely just the opposite. This complementarity has been recog-
nized in the past (Reggia, Monner, & Sylvester, 2014) and lever-
aged effectively in a number of cognitive architectures (e.g., Sun &
Naveh, 2004).

The current limited abilities of neural architectures to cap-
ture critical aspects of high-level cognition put them at a tremen-
dous disadvantage relative to symbolic AI techniques when
trying to engineer neurocomputational systems for high-level
problem-solving tasks. Suchproblemsolving bypeople depends on
cognitive control, the process ofmanaging other cognitive processes
(Schneider & Chein, 2003). Examples of cognitive control include
such executive functions as shifting attention, response selection,
working memory maintenance, goal setting, and inhibition of ir-
relevant signals. Executive functions are primarily associated with
prefrontal cortex in the primate brain, and substantial recent work
has focused on localizing these functions to specific individual pre-
frontal regions (Burgess, Dumontheil, & Gilbert, 2007; Koechlin &
Summerfield, 2007).
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The limited ability of neurocomputational methods to support
higher-level cognitive/executive functions is somewhat surprising
in that the human brain handles such issues routinely, thereby es-
tablishing that neural computations have the capacity to do so. In
the work that we describe here, while we take inspiration from
human cognition and neuroscience, we are not trying to create ac-
curate models of either. Instead our primary focus is on how to
construct/engineer neural network systems for problem-solving
tasks that are competitive with top-down symbolic AI problem-
solving systems. Developing purely neurocomputational systems
for high-level problem solving could ultimately provide sev-
eral significant practical advantages. For example, when com-
pared to traditional top-down AI, neural computation is fault
tolerant, and it has the potential for great speed due to its in-
herent parallel processing (Haykin, 2009; Reggia et al., 2014).
The latter is particularly true given the recent increasing avail-
ability of parallel computing hardware such as neural network
chips and GPU clusters. Further, neurocomputational methods
have the ability to learn and adapt, something that will be
increasingly important in future AI systems of all kinds.

Studying neurocognitive architectures involving cognitive con-
trol is currently viewed as an important research direction (Roy,
2008), and the importance of developing neural computational
methods for cognitive control is likely to substantially increase
over the next decade as work on developing large-scale brain
and neurocognitive models accelerates. By large-scale models
we mean recent and ongoing research efforts to create neuro-
anatomically grounded simulations of all or major portions of
human/mammalian brain structure and function, or at least ma-
jor subsystems of the brain that span multiple cortical regions.
These models vary from extremely large networks of biologically-
realistic spiking neurons to those that aremore abstract, based on a
higher level of components such as cortical columns, or are focused
on simultaneously supporting human cognitive functions (e.g., de
Garis, Shuo, Goertzel, & Ruiting, 2010; Eliasmith et al., 2012;
Townsend, Keedwell, & Galton, 2014; Weems & Reggia, 2006;
Winder, Cortez, Reggia, & Tagamets, 2007). They are often inspired
by the view that the brain is organized as a network of regions
that are inter-connected via well recognized pathways. Specifi-
cally, the primate cerebral cortex is organized as a distributed
network of interacting cortical regions, exhibiting both functional
integration and functional segregation (Bressler & Menon, 2010;
Sporns, 2011; van Essen, Anderson, & Felleman, 1992). Large-scale
region-and-pathway models inspired by this viewpoint consist of
components (modules) that are neural network simulations of in-
dividual brain regions, e.g., Wernicke’s and Broca’s areas and the
arcuate fasciculus that connects them (Monner & Reggia, 2013;
Weems & Reggia, 2006). Work on large-scale neurocognitive mod-
els is increasing in part due to recent major funding initiatives
(Europe’s Human Brain Project, US brain Initiative, etc. (Abbott,
2013)).

A fundamental question arises in constructing large-scale neu-
rocognitive architectures like these: Is there an identifiable mini-
mal set of generic, region-level functions and interactions that can
be used to construct neural architectures that provide cognitive
control of human-like problem-solving behaviors? As one possi-
ble approach to answering this question, we have recently pro-
posed the galis framework (Sylvester, Reggia, Weems, & Bunting,
2013), where galis is an acronym for ‘‘Gated Attractors Learn-
ing Instruction Sequences’’. The methods used in galis are in-
tended to provide a general purpose framework within which
models for specific higher-level problem solving tasks can be in-
stantiated and trained using solely subsymbolic methods. While it
takes inspiration from the human brain and cognition, galis is not
intended to be a veridical model of either the brain or human rea-
soning. The central issue that galis addresses concerns how one
can adopt and extend purely neurocomputational methods to en-
gineer high-level cognitive control of the sort that can currently
only be readily modeled using top-down symbolic approaches.
galis assumes that one is interested in constructing a large-scale
region-and-pathway model of some aspect of human-level cog-
nition that is inspired by the organization of the cerebral cor-
tex, and perhaps other subcortical brain regions. An implication
of this assumption is that model brain regions must learn not
only the facts about a specific instance of a task, but also the pro-
cedure or ‘‘instruction sequence’’ that is needed to perform that
task in general. This focus on making problem solving dependent
on patterns stored in the network’s memory, rather than on the
network’s structure or ‘‘hardware’’, differs from many previous
models of cognitive control, and is intended to make galismodels
more generalizable: Their behavior can be changed by adjusting
which behavioral sequences are learned rather than by adjusting
the structure of the model itself.

galis answers the fundamental question above by adopting two
principles. First, galis assumes that each region in the cortical
network can be conceptualized as an attractor neural network —
a dynamical complex system whose activity is driven towards
certain preferred states. Attractor networks have been used
previously in cognitive control models (Farrell & Lewandowsky,
2002; Hoshino, Usuba, Kashimori, & Kambara, 1997; Jones &
Polk, 2002), but usually operate only with fixed-point attractors.
In contrast, galis’ attractors are designed to enable switching
between attractor states in ordered sequences. This is critical if
procedural information of the sort readily handled by top-down
symbolic AI methods is to be accommodated in memory:
procedures by their very nature must have temporal extents
and their component steps must be performed in a specific
order (Ismail & Shapiro, 2000). While multiple techniques have
been used to add similar dynamism to attractor nets (Brown,
Preece, & Hulme, 2000; Horn & Opher, 1996; Winder, Reggia,
Weems, & Bunting, 2009), galis uses an approach to learning
of temporally asymmetric connection weights that we recently
developed (Sylvester, Reggia, & Weems, 2011; Sylvester, Reggia,
Weems, & Bunting, 2010a).

Second, galis assumes that each cortical region cannot only
exchange information with other cortical regions in the form of
activity patterns, but can also gate other regions’ functions and
interactions. By gating here we mean that one cortical region can
modulate the functions of other regions, or open/close the flow of
information between other regions. The inspiration for adopting
gating as a central aspect of neural problem-solving systems comes
from past neuroscience research and neurobiologically-realistic
computational models suggesting that gating is an important
aspect of brain dynamics (Frank, Loughry, & O’Reilly, 2001;
O’Reilly & Frank, 2006; Sherman & Guillery, 2006; Singer, 2011;
Womelsdorf & Fries, 2009). While there have been numerous
theories posited for the biological structures that could directly
or indirectly underly such cortical gating, galis is agnostic about
the particular physiological implementation. Rather, we take the
existence of some suchmechanism as given and implement gating
as direct interactions between model cortical regions and their
connecting pathways.

In summary, the basic hypothesis being explored via galis is
that large-scale region-and-pathway models based on (1) repre-
senting procedures/programs as temporal sequences of attractor
states, and (2) allowingmodel regions to gate the behavior of other
model regions, provide a sufficient purely-neurocomputational
framework for engineering autonomous problem-solving systems
that can be competitive with the more traditional top-down
symbolic problem-solving systems that are used in AI. While our
previous work with galis was encouraging in showing that it
could successfully supportmodels for simpleworkingmemory ap-
plications such as the n-Back task used in psychological testing
(Sylvester et al., 2011, 2013), such applications were too simple to
seriously support this hypothesis; they had no need to generate
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Fig. 1. A depiction of the visual environment for the card matching task during play. On the left is a view of the full environment. Here there are 10 cards still present, two
of which are face-up showing an and a vertically-striped pattern. The middle part of the illustration shows an expanded view of these two cards as well as one of the
face-down cards. On the right a 4×4 section of the board has been enlarged to show how each of the four ‘‘colors’’ used in the visual field is encoded as an 8 bit binary string.
In this example, the white areas on the faces of cards (upper left of detailed area) are encoded as 11010000 and the black areas on the faces of cards are encoded as 01010111.
outputs that influence the external problem state, they did not use
spatial information, etc.

In this context, here we extend the galis framework in several
ways beyond our previous work that only required determining
when to learn or remove patterns from working memory in
n-Back problems. Specifically, we construct a galis system for
problem solving during much more challenging card matching
tasks in which an agent uncovers pairs of face-down cards, trying
to select pairs that have matching patterns on their faces. The
extended system differs from our previous work in that now,
for the first time, it incorporates interacting ‘‘what’’ and ‘‘where’’
visual pathways capable of associating seen objects with their
locations, it retains inworkingmemory the location and identity of
previously-observed entities (uncovered cards), it uses top-down
attention mechanisms to focus on specific portions of the visual
environment, and it selects appropriate output actions to take
to perform the card matching task correctly. Most importantly,
the resulting galis system now effectively acts as an autonomous
problem-solving system that interprets spatial relationships and
controls output actions in an ongoing sequence of steps that
sequentially alter the external problem state. Computational
experiments are used to show that our galis cardmatching system
not only performs the task successfully, but also that it does so in
ways that are reminiscent of what we observed when we asked
human subjects to perform this same task and when a top-down
symbolic program is used to solve the same kind of problems.

2. Methods

Herewe apply the galis approach for the first time to a complex
problem-solving task known by many names including ‘‘Pairs’’,
‘‘Pelmanism’’, and ‘‘Concentration’’, but which we refer to as the
card matching problem. This task involves first randomly placing
several pairs of cards face-down on a tabletop. The player turns
over two cards each round, one at a time, with the goal being to
uncover matching pairs of cards so that they can be removed from
the table. The problem is solvedwhen all cards have been removed.

The requirements of the card matching task substantially
expand on previous work with galis by placing stimuli patterns
in a spatial environment. That is, the model is not just attempting
to remember and work with a set of abstract stimuli in the æther,
but must successfully bind together what was seen with where
it was seen in the environment. The binding together of multiple
features (Feldman, 2013), something readily handled by top-down
symbolic AI methods, is an ongoing challenge for neural models.
This task also requires that a system makes judgements about the
contents of its own memory. In other words, it is not enough to
just store a series of stimuli, but the model must be able to make
strategic decisions based on introspection of its own memory of
Fig. 2. Overall architecture of the galismodel for the card matching task. Its seven
modules form three functional systems, the visual, executive and motor systems.
Each system is indicated by an enclosing dashed-line box. See Figs. 3 and 4 for more
detailed views of the visual and executive systems, respectively.

what cards have been seen previously and their locations, and then
to take appropriate actions based on this information.

In this work we are not concerned with the details of low-level
image processing or low-level movement control, tasks at which
existing neurocomputational methods are quite effective. Accord-
ingly, our low-level sensory processing is intentionally greatly
simplified. For example, in our implementation of card matching
described below each card is only 9 by 13 pixels in size.
The backs are a uniform dark grey, and the fronts are monochro-
matic patterns such as horizontal stripes, crosses, or diagonals.
Depending on the experiment either four, six or eight pairs of
matching cards (i.e., eight, twelve or sixteen cards in all) are ar-
rayed on the table top (see Fig. 1), initially all face down. The images
on the fronts of cards consist of monochromatic, low-resolution
simplifications of national flags. For instance the -shaped card
in Fig. 1 is derived from the flag of Scotland, while the striped card
could alternately represent the flag of Italy, Ireland or France.

The galis model for card matching is composed of seven mod-
ules as illustrated in Fig. 2. These are the Visual, Location, Object,
Motor, Working Memory, Conflict, and Controller modules. Their
functions are explained in the remainder of this section.

2.1. Visual system

The Visual System in our model consists of the Primary Visual,
Location, and Object modules, as shown in Fig. 3. The Primary
Visual module provides input to the model. Its visual field consists
of a 55× 67 grid of grayscale ‘‘pixels’’. This size, and that of several
other modules, is somewhat arbitrary: It was chosen so that the
maximumnumber of cards used in the computational experiments
described later could comfortably fitwhen displayed. Each primary
visual node may take one of four values: light grey, representing
the surface of the tabletop; dark grey, representing the back of a
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Fig. 3. The model’s visual system. Here there are 8 cards depicted in the
environment. All are face-down except for one in the bottom row, which is striped.
The region of the Location module corresponding to this card is the most active. A
Location node along the left edge is also highlighted, along with its topographically
corresponding receptive field in the Visual module. The state of the Object module
reflects that it is attending to the sole face-up card. Two of its nodes and their
receptive fields are shown. The smaller rectangles between the Visual and Object
modules are depictions of the incoming weights to these two nodes, as set by the
Locationmodule. One can view these as a cross-section of the connections, with just
one of the many incoming links to each node being open/active.

card; white and black, which together make the patterns on the
front of the cards. Each of these values is represented by a random
8-bit pattern, so there is a total of 29480 nodes/neurons in the
Primary Visual module.

2.1.1. Overview
The Visual module’s output is sent to two different regions,

the Location and Object modules, for further processing (Fig. 3).
This parallel visual pathway organization is inspired by the ventral
‘‘what’’ and dorsal ‘‘where’’ visual pathways of the mammalian
brain (Baizer, Ungerleider, & Desimone, 1991; Ungerleider &
Haxby, 1994) and how these pathways provide integrated
information to prefrontal cortical regions (via the temporal and
parietal cortical regions). Binding the general location information
provided by the dorsal pathway with the appropriate detailed
object-specific information provided by the ventral pathway is a
significant challenge (Reynolds & Desimone, 1999). In our model,
the Location and Object modules can be seen as simplified analogs
to the parietal and temporal cortices, respectively (Baizer et al.,
1991). The former is responsible for broad but low-resolution
vision—identifying that there is an object at a particular location,
but not the particular features of that object – while the latter
provides a detailed but narrow view – thus being able to discern
details of the object but remaining ignorant of its location. The
two visual pathways influence each other, with the Location
module helping to guide the attention of the Object module,
and the Object module providing detailed information about the
visual field that the Location module lacks. This inter-pathway
influence fits naturally with galis’ use of gating/higher-order
network connections. It is similar in spirit to pastmore-biologically
realistic models of interacting dorsal and ventral pathways in the
brain that have been studied in isolation (i.e., not in the context of
problem solving as we do here) in order to better understand the
neurobiology of visual processing (Heinke & Backhaus, 2011; van
der Velde & de Kamps, 2001).

The Location module is the same size as the Visual module:
55× 67 pixels. Rather than using 8 binary nodes to represent each
pixel, each pixel is congruent with a single node with values in
[0, 1]. This value roughly represents the salience themodel gives to
that location in the visual field. Nodes’ activations are determined
by the logistic sigmoid of the sumof both bottom-up input from the
Visual Module and top-down attentional input from the Executive
System. For the former of these inputs, each node is connected
topographically, with a receptive field in the Visualmodule of a 5×

5 square. The second input is from the Executive System. This input
is gated so thatwhen it is closed the attention of themodel emerges
from the interaction of the Visual and Location modules. When it
is open, it serves to control visual attention from the top-down.
This is of particular use when there are two cards face-up. Using
only the bottom-up attentional mechanism both will be equally
salient. The addition of the top-down element allows the Location
module’s focus to be directed to the card chosen by the Executive
System.

The Locationmodule also has two outputs. The first leads to the
Executive system, providing it with a coarse view of the visual field
so that itmay determine object locations at a top level. Theweights
on these outputs, calledWloc, form a random bipolar matrix of size
1024 × 3685. This has the effect of assigning each node a random
1024 bit code. This pattern is then stored in the Working Memory
to track where a card was seen.

The second output from the Location module is used, as
mentioned previously, to control the receptive field of the Object
module (see Figs. 2 and 3). The Object module (9 × 13 pixels,
each of which uses 8 binary nodes to encode ‘‘color’’ values,
for a total of 936 nodes; these sizes are somewhat arbitrary)
can access the visual field in finer detail, but at the cost of a
limited scope. The Location module determines where the Object
module should focus its limited field-of-view. We view this as
an example of gating. The output of the Location module is able
to open and close activity flowing from the Visual to the Object
module. Thus,Wobj acts like amask, only allowing the portion of an
Object node’s receptive field which corresponds topographically
to a card of interest to pass through. Activity in some portion of
the Location module (which manifests as a rectangularly-shaped
block of activation) moves the focus of the Object module to
attend to the area in the visual field corresponding to this activity.
So, for example, if there is high activity in the upper left of the
Location module then the connections between the upper left of
the visual field and the Object module are opened and the rest is
closed. This gating can be viewed as an example of higher-order
nodes (Lipson & Siegelmann, 2000). It is implemented via
multiplicatively modulated weights (Akam & Kullmann, 2014), in
which one network’s output (from the Location module) is used
to adjust the weights of another network (the Object module).
The Object module is thus guided to focus on a particular region
of the input plane by the Location module using a combination
of the bottom-up information from the Primary Visual module
and top-down information from the Executive System. Its output
proceeds upstream to the Working Memory region with one-to-
one connections, so that themodel can formamemory of the visual
appearance of cards it has seen.

2.1.2. Location Pathway
The weights on the bottom-up connections (Wvis) from the

Visual to Location modules are trained using one step of Hebbian
learning per input pattern. We use extensive weight-sharing,
allowing nodes to have identical incoming weights but different
receptive fields. Thismakes training efficient. The training patterns
are a selection of possible 5 × 5 patterns which appear on cards
(12.5% of the total possible patterns are used for training). Through
this process nodes learn to turn onwhen they detect patterns from
the faces of cards, and remain off when their input field is the table
top. This produces a rectangular surge of activity in the Location
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modulewhich corresponds topographically to that of face-up cards
in the Visual module. (In Fig. 3, this is the horizontally-striped card
in the center-right of the bottom row.)

The weights on the top-down connections to the Location
module from the Executive system are merely the transpose of the
weights on the counter-flowing, bottom-up connections discussed
immediately below. The final state of a node is just the sum of
both the bottom-up and top-down influences, weighted by the
appropriate gating factor.

li = σ

Wvis R(i) + gwm,loc Wloc

T(:, i) a⃗

. (1)

Here li is the activation of node i in the Location Layer, R(i) is the
receptive field of node i, gwm,loc is the gate governing top-down
attention, Wloc(:,i) is the set of weights out from node i to the
Working Memory, σ is the logistic function, and a⃗ is the state of
the nodes in Working Memory which store where/location data.

The output from the Location module to the Executive system
is thus the average of each node’s weighted activity. As a result,
overlapping areas of activity produce similar outputs, despite the
randomness of each individual node’s representation. This system
also has the desirable by-product of reducing the dimensionality
of the spatial encoding from that needed by the Location module
(3685) to that used by the Working Memory. The overall effect
is similar to that of Random Matrix Transformations (Achlioptas,
2003; Johnson & Lindenstrauss, 1984; Rahimi & Recht, 2008).
Finally, this approach has the added advantage of being easily
invertible: Wloc is used to translate between the encoding used
by the Location Module to that used by the Working Memory,
providing bottom-up visual attention;Wloc

T is used for the reverse
translation, allowing for top-down attention control.

2.1.3. Object pathway
Every node i in theObjectmodule has a receptive field of 47×55

nodes in the Visual module. At any one time, each Object module
node should only be accepting input from one of those Visual
module nodes. Furthermore, each Object node should be accepting
input from the node in the same location in its receptive field—i.e.,
if one node is attending to themiddle of the top row of its receptive
field, so should the others be. Each area of activity in the Location
module therefore translates into a single active point in a 47 × 55
grid (see Fig. 3). These pairs of active regions in the Locationmodule
with their correlating points of focus in the visual field are used
as training patterns for the hetero-associative Hebbian learning
used to form the weights Wobj controlling the Object module’s
focus.

The activation oi of Object module node i can be formalized as

oi = σ


j∈N(i)


xj

k∈loc

Wobjjk lk


(2)

where σ is again the logistic sigmoid function, N(i) is the receptive
neighborhood of node i, xj is the state of a node in the Visual
module, loc is the set of nodes in the Location module, and lk is
the state of one of the nodes in the Location module.

2.2. Executive system

The Executive System consists of three modules (see Fig. 2):
WorkingMemory, a Controller, and a Conflictmodule. It is inspired
by functionalities generally associated with prefrontal cortical
regions of the brain. The Executive System’s structure is shown in
more detail in Fig. 4.
2.2.1. Working memory
TheWorking Memory system stores knowledge of which cards

have been observed and where they were observed by integrating
and learning the outputs of the Location and Object modules.
This allows the model to choose pairs of cards intelligently based
on its past experience (much as a person does) rather than
blindly guessing the locations of potential matches. The working
memories used to remember external stimuli in previous galis
models were unitary: they were capable of storing a sequence of
binary patterns, but each pattern stood alone, without reference
to any features such as its location in space (Reggia, Sylvester,
Weems, & Bunting, 2009; Sylvester et al., 2010a). Using the same
approach that galis already uses to store instruction sequences,
we now employ an auto-associative network to effectively link
representations of seen objects (i.e., overturned cards) and the
locations at which they appeared, i.e., to bind these two types of
information together.

Training of Working Memory is accomplished with one step of
Hebbian learning per stored pattern, which occurs whenever the
Working Memory training gate is open. This establishes the pat-
tern to be learned as an attractor in the Working Memory’s state
space. This pattern can then be recovered when the network is
in a state sufficiently close to it: either a noisy or corrupted ver-
sion of the original pattern, or – more importantly for our pur-
poses – when a part of the pattern in missing. For example, if
the -shaped ‘‘Scotland’’ card depicted in Fig. 1 is observed in
the top-most row and left-most column of cards in the environ-
ment, then the working memory would learn a string correspond-
ing to the object–location tuple ( ; top left corner). This string
becomes stored in working memory, or in other words, it becomes
an attractor state of the Working Memory network via one step
of Hebbian learning. This allows the full pattern to be recovered
from either portion, and explains how our model binds informa-
tion together without using mechanisms such as oscillatory syn-
chronization. That is, by subsequently setting the ‘‘what’’ nodes to
‘‘ ’’ and allowing thememory to update, the ‘‘top left corner’’ por-
tion can be recovered, and vice-versa, as illustrated in Fig. 5. It is in
this sense that ‘‘ ’’ and ‘‘top left corner’’ are bound together in the
model’s working memory. Working memory has 1960 nodes (936
what, 1024 where).

Every time the Working Memory is trained with an ob-
ject–location pair, its prior weights undergo weight decay by an
amount δN. This reduces the interference between patterns in
memory, and allows for older memories to be supplanted by more
recent ones. Adjusting the amount of decay can be used to affect
the length of sequences that amemory like this stores: lower levels
of decay allow longer series at the cost of more interference, while
higher levels of decay are better suited for shorter series (Winder
et al., 2009). More specifically, the weight matrix, WWM, is trained
with one-step of Hebbian learning per pattern a⃗ stored with the
addition of a weight decay term so that older memories are sup-
planted by more recent ones:

wij(t) = (1 − δN) wij(t − 1) +
1
N

ai(t) aj(t) (1 − δij) (3)

where ai(t) is the activation level of the ith node and N is the
number of nodes in the working memory module. Here δN is the
decay rate (0 ≤ δN < 1) and δij is Kronecker’s delta, the latter
ensuring that weights on self-connections stay fixed at zero.

The model’s Working Memory also includes a ‘‘register’’ layer
(see Fig. 4) to allow the comparison of onepattern to another. These
allow operations on multiple operands. The register layer is the
same size as the main WM layer, and is linked to it by one-to-one,
gated connections allowing patterns to be read into and out of this
extra buffer. This layer was not present in the earlier n-Backmodel
described in Sylvester et al. (2013) as the task addressed there did
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Fig. 4. Architecture of the model’s executive system. Thick arrows represent full internal connections. Thinner gray lines represent gating outputs from the Controller. Note
that the size of layers is not to scale.
Fig. 5. A schematic illustration of how the binding of a flag’s pattern ( in this
case) and its location (top left corner) occurs in working memory. Top: To learn
this association, the activity patterns representing and top left corner are input
to the working memory. These patterns are composed of ±1 node values (here,
a ‘‘+’’ indicates a +1 activation level and a ‘‘−’’ indicates a −1 activation level
for a node). The working memory elements are fully connected to one another,
as suggested by the curved solid arrow on the right, with weights WWM on their
connections. In other words, while we conceptually interpret the working memory
as being composed of ‘‘what’’ and ‘‘where’’ nodes, all of these nodes are connected
to one another. One step of Hebb-like learning as described in the text is used to
make this composite activity pattern an attractor state of the network, thereby
binding together the and top left corner information.Multiplewhat–where pairs
of previously seen cards are stored like this simultaneously in working memory.
Bottom: Once a what–where pair has been stored in working memory, it can
be recalled by initializing the working memory with just one part of the pair.
For example, here the ‘‘what’’ activity pattern is input to working memory
along with an arbitrary/random activity pattern for its location, and the network’s
activity is allowed to change (vertical dashed arrow) until, biased by the initial

activation sub-pattern, it reaches an attractor state representing the originally
stored object–location tuple ( ; top left corner).

not require comparing multiple patterns stored within working
memory.

Considered inmore detail, the updated activity states si of nodes
in the primary WM layer are the result of a sum, weighted by the
appropriate synaptic strengthswij and gate values g , of the current
states sj, the state of the corresponding register node ri, and the
output of the visual system oi. For nodes which encode ‘‘what’’
information, this latter value is simply based on the state of the
Object Layer. For nodes encoding ‘‘where’’ information, it is the
state of the Location Layer, as weighted by theWloc weight matrix.
This can be formalized as

si = sgn


j∈WM

WWM ijsj + greg,wmri + gobj,wmoi


(4)

for ‘‘what’’ nodes and

si = sgn


j∈WM

WWM ijsj + greg,wmri + gloc,wm


k∈loc

Wloc iklk


(5)

for ‘‘where’’ nodes. Here oi is the activity of the ith node of the
Object module, lk is the activity of the kth node of the Location
module, greg,wmis the gate on the register-to-WM connection,
gobj,wm is the gate on the Object-to-WM connection, and gloc,wm is
the gate on the Location-to-WM connection.

Nodes in the registers update their activity ri according to the
simple rule:

ri = sgn(greg,self ri + gwm,reg si) (6)

where si is the state of the topographically corresponding node
in the primary Working Memory layer. It can be seen that the
new state of a register is either the persistence of its current state
or a switch to the state of the primary WM layer, depending on
whether the register-to-self gate (greg,self ) or the WM-to-register
gate (gwm,reg ) is open. That is, depending on the gate signals
the register will either maintain the current state, or load a new
one from WM. This crystallizes the dichotomy between stable
maintenance and rapid updating (Goldman-Rakic, 1987).

2.2.2. Controller overview
The Controller, which we synonymously refer to as the Control

Module, is at the core of the Executive System (see Fig. 4). It is
trained to direct the operation of the rest of the model by
opening and closing nine gates that govern the flow of activity,
thereby allowing the entire system to function autonomously
after training. The structure and function of the Controller are
unchanged from the previous galis instantiation of Sylvester et al.
(2013), which was used to model performance of the n-Back task
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from cognitive psychology (Owen, McMillan, Laird, & Bullmore,
2005). The identical Controller architecture, when trained initially
on a different set of instruction patterns, was used to perform this
very different task—i.e., the controller provides a general purpose
mechanism for cognitive control.

The nucleus of the Controller is a discrete attractor network
called the Instruction SequenceMemory (ISM). This is amemory unit
whose purpose is to store the instructions for problem solving, in
this case for card matching problems. A galis model’s behavior is
determined in large part by multiple sequences of patterns that
have been stored simultaneously in its ISM, which shift the control
of the network’s behavior away from its architectural construction
and towards its informational content. Informally, the ISM allows
one to store (via one step of learning per instruction being stored)
a procedure or ‘‘program’’ for solving problems such as the card
matching task.

Input to the ISM comes from a subcomponent called the
Encoder, which is a hetero-associative neural network that is
responsible for converting the Controller’s input into a selection of
which stored instruction sequence the ISM will process. The ISM’s
output is sent to the Decoder, which provides a hetero-associative
network that translates between the patterns stored in the ISM
and the actual values which are sent to each gate. These two
hetero-associative sub-components serve dual purposes. The first
is noise reduction. This is possible because each specializes in
either storing inputs or outputs, while the ISM is required to
represent both inputs and outputs as well as the links between
them. The second purpose is to decouple the size of inputs from
outputs. For example, the Controller has nine outputs: one for
each gate. However, more than nine nodes are needed to store
a distributed representation of the six actions used for the card
matching task in Hopfield-type attractor networks (Storkey, 1997).
The Encoder and Decoder make it possible to translate between
representations of differing sizes.

The core of the Controller, the ISM, is trained prior to task
execution on the necessary sequences of steps themodelmust take
to perform the cardmatching task. Each of the eight rows in Table 1
(i.e., the eight actions in the right column) is represented by a
binary string, and each of these strings is stored as an attractor state
of the ISMusing one step ofHebbian learning per instruction. These
eight actions are linked together into three different sequences
using temporally asymmetric weights (Sylvester et al., 2011,
2010a), as explained inmore detail below. Each of these sequences
corresponds to the appropriate response to there being either zero,
one or two cards face-up. Depending on the number of cardswhich
are face-up – as judged by the Conflict Module – the Controller
executes one of the three action sequences detailed in Table 1.

The central idea of the ISM’s instruction sequence execution
process can be illustrated schematically as state transitions over
a changing energy landscape, as illustrated in Fig. 6. In Fig. 6(a), the
ISM’s initial state (open circle) quickly transitions to an attractor
state (filled circle) at an energy minimum that is determined by
the network’s symmetric weights. This latter fixed-point attractor
state corresponds to execution of the first learned instruction of the
selected instruction sequence. While remaining in this attractor
state, node thresholds gradually change (increasing for nodes with
+1 activation level, decreasing for those with −1 activation level),
effectively modifying the energy landscape so that the ISM’s state
no longer lies at an energy minimum (open circle in Fig. 6(b)).
Guided by the learned asymmetric weights on connections, the
ISM’s state transitions to another energyminimum that represents
the next stored instruction (Fig. 6(b)). This process continues
repeatedly as the ISM executes its ‘‘stored program’’ (Fig. 6(c),
where the filled circle corresponds to the activity pattern of the
third instruction that is executed).

The ISM’s outputs are the states of the nine gates distributed
throughout the rest of the model (see Fig. 4). They are:
1. the Working Memory Training gate (gtrain), which controls
when the weight matrix of the Working Memory layer
undergoes training;

2. the Motor Output gate (gmotor), which allows the model to
gesture to a location on the board to choose a card using the
output of the Motor module;

3. the Location-to-Working Memory (gloc,wm) gate, which allows
the Working Memory state to be influenced by that of the
current Location Module state;

4. the Object-to-WorkingMemory (gobj,wm) gate, which allows the
Working Memory state to be influenced by that of the current
Object Module state;

5. the Register-to-Working Memory (greg,wm), which governs the
effect of the register on the ‘‘what’’ and ‘‘where’’ portions of the
Working Memory layer;

6. the Working Memory-to-Register gate (gwm,reg ), which does
the reverse;

7. the WM-to-Location gate (gwm,loc), which allows the ‘‘where
nodes’’ of the Working Memory to affect the Location Module,
causing the Executive System to drive attention in a top-down
way;

8. the Register-to-Self gate (greg,self ), which allows the new
register states to be dependent on their current state (opening
this allows maintenance of a pattern, while closing it allows
rapid updating), and;

9. the Encoder Update gate (gconf) which governs the inputs from
the conflict module to the control module, so that the latter can
decide whether to begin a new sequence of instructions.

This set of gates is manipulated in order to act out the set
of six different actions the Controller takes in execution of card
matching. These six actions are combined in different ways to
create the three sequences in Table 1.

When there is no card face-up in the environment, the
Controller attempts to determine if it knows the location of a
matching pair of cards. This is accomplished by retrieving a pattern
stored in Working Memory and storing it in the Register. The
WorkingMemory is then updated again, but its attractor landscape
is perturbed by input from the Register. The connections between
‘‘what’’ nodes are set to be strongly excitatory, while those of
‘‘where’’ nodes are mildly inhibitory. This has the affect of causing
the network to shift to a new attractor with the same ‘‘what’’
sub-pattern (i.e., representing the same card image), but a different
‘‘where’’ sub-pattern (i.e., known to be at a different location). This
‘‘where’’ sub-pattern is then passed to theMotorModule for output
and to the Location Module to provide the top-down portion of
attentional control.

When one card is visible (face-up), the first step is to open the
Location-to-Working Memory and Object-to-Working Memory
gates so that the Working Memory’s state will represent the
environment being witnessed. The WM Training gate is then
opened, so that this observation is added to theWorkingMemory’s
knowledge. Next, a check is run to see if there is a card in memory
thatmatches the one currently being observed. This operates using
the samemethod as in the zero-cards-up case, except here the card
we are hoping to find is a match for is the one which is currently
visible rather than a random card chosen from memory contents
as in the zero-card case. To accomplish this the visible card is
stored in the Register, and the WM is updated with excitation on
the ‘‘what’’ connections and inhibition on the ‘‘where’’ connections
from the Register. If a second location for this card has been trained
then it will become the new state of the WM network because
the inputs from the Register are pushing the Working Memory
state into the corresponding attractor basin. If a second location
is not known there will be no basin in the region of attractor
space the Working Memory is in, and so it will transition into
some other attractor. While this attractor may be close in the state
space of the WM network, from the point of view of locations in
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Fig. 6. Schematic illustration of ISM state transitions during execution of a sequence of instructions. On the left, the horizontal axis in each case represents the ISM’s activity
state, while the vertical axis represents the corresponding energy level. The irregular horizontal lines thus correspond to the energy landscape at three different times
associated with different activity states of the ISM. Local minima of an energy landscape correspond to attractor states of the ISM that represent stored instructions. The
circles represent the ISM’s current state (open circle = transient non-attractor state; filled circle = fixed-point attractor state for the pictured energy landscape). On the
right, example encodings of individual instructions stored in an instruction sequence in the ISM. Each instruction, which is represented as a randomly chosen activity pattern
of ±1 node values, conceptually consists of cue node values followed by response node values. A ‘‘+’’ indicates a +1 activation level and a ‘‘−’’ indicates a −1 activation
level for a node. Cue node patterns are identical for instructions in a single sequence as shown here. Response nodes are unique to each instruction, and determine the gates
that are opened/closed by the instruction. a. The ISM’s initial state (open circle) quickly transitions to an attractor state (filled circle) at a local energy minimum determined
by the ISM’s learned symmetric weightsWISM . This state corresponds to a stored instruction, which is pictured to the right. b. While the ISM remains in the attractor state of
(a), threshold values slowly change (thick arrow labeled 1θ ). The changing thresholds effectively modify the energy landscape (compare energy landscapes in (a) and (b)),
so that the initial instruction in (a) is no longer a stable equilibrium point of the ISM in (b). The ISM’s activity pattern (open circle), guided by the ISM’s learned asymmetric
weights VISM , transitions to a new fixed point (filled circle) that corresponds to the second instruction in the sequence, which is pictured on the right. c. This process repeats
itself, here showing the transition to the third instruction, until the instruction sequence has ended.
Table 1
Learned response sequences stored in the control module’s ISM.

Sequence Action

1. Zero cards face-up 1. Update WM to retrieve a stored pattern
2. Load WM contents into register
3. Load register contents into WM

(excite object connections, inhibit location connections);
Enable top-down attention
Enable output from motor module

2. One card face-up 4. Load object module contents into WM;
Load location module contents into WM

5. Load WM contents into register;
Train WM on current pattern

3. Load register contents into WM
(excite object connections, inhibit location connections);

Enable top-down attention
Enable output from motor module

3. Two cards face-up 4. Load object module contents into WM;
Load location module contents into WM

6. Train WM on current pattern
the external environment it appears to be a randomly guessed
location. This has the desired affect of making the model guess a
location to explore. In either case, the ‘‘where’’ sub-pattern which
results from this update is passed to the Motor module for output
and back to the Location module. In both the zero and one card
visible situations the Working Memory’s attractor state is being
used as both a store of memory and a decision-maker, in a way
similar to the network described in Machens, Romo, and Brody
(2005). The dynamic network described there performs a sequence
of operations described as ‘perceive-hold-compare’. The WM of
galis can be seen as performing a similar ‘recall-hold-compare’ set
of operations.

The model’s actions when there are two cards face-up are very
simple (as they are for a humanplayer). If the two cardsmatch then
they are removed from the environment. If not, the only action
required is to add the newly observed card to Working Memory.
This is accomplished in the same way as with the beginning of
the one-card-up case: open the gates allowing the Object and
LocationModules to load their activity in theWorkingMemory and
then update theWorkingMemory weights on this newly observed
pattern.
To illustrate how the trained control module works during ex-
ecution of a task, in Fig. 7 we show an example of how the model
responds to a simplified environment of four cards, one of which
is face-up. The key gates involved at each step, including those un-
dergoing changes, are high-lighted by small, gray-shaded circles.
The steps depicted here do not correspond one-to-one with time
steps as they are simulated within the model: we have broken
them down further to allow us to narrate the interactions more
clearly. The example begins with one striped card face-up in the
visual field (Fig. 7(a)). The Location module identifies this card as
being the most salient place to focus on, and guides the Object
module to attend to it. The existence of only a single location of in-
terest also results in a low output from the Conflict module, which
consequently directs the Control module to begin processing
Sequence 2 in Table 1. Once Sequence 2 has begun (Fig. 7(b)),
the Encoder Update gate is closed until the sequence is complete.
Action 4 of Sequence 2 dictates that the gates connecting the
Location and Object modules with the corresponding portion of
WorkingMemory be opened. The resulting input causes theWork-
ing Memory layer to adopt the attractor patterns representing a
horizontal striped card located in the lower left corner. Action 5
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Fig. 7. Step-by-step operation of the model to process one card. (See text for details.)
instructs the Working Memory to train on the current pattern
(Fig. 7(c)), adding the currently viewed card to its record. The cur-
rent pattern is also loaded into the Register layer. The Object- and
Location-to-Working Memory gates are then closed. The Register-
to-Self gates are opened (Fig. 7(d)), allowing the Registers tomain-
tain their current states. The WM-to-Register gates are closed, but
the reverse Register-to-WM gates are opened. The Object portion
uses excitatory activity to influence the main Working Memory
layer to maintain the horizontal stripes pattern. The Location por-
tion uses inhibitory activity to try and push the Working Memory
layer out of the lower-left-corner attractor. Ideallywhen theWM is
updated its statewill shift to another attractor statewhichhas been
associated in memory with the same striped pattern. If no other
location has been learned with the current object pattern then a
location will be chosen randomly. In this case the Working Mem-
ory state updates so that the location portion represents the lower-
right corner (Fig. 7(e)). The WM-to-Location gate opens, allowing
top-down attention, and drawing the focus of the Location gate to-
wards the lower-right card. The Motor Output gate is also opened,
allowing the model to ‘‘gesture’’ to the lower-right card it would
like revealed next. The card in the lower-right is revealed, show-
ing a cross pattern (Fig. 7(f)). The combination of the bottom-up
input from the Visual layer and the top-down direction from the
Working Memory results in the Location module focusing on this
new card. However, there is now a conflict between which of the
two cards should be attended to, resulting in higher activation in
the Conflict module, which causes Sequence 3 for the two-cards-
face-up situation to be executed next.

2.2.3. Instruction sequence memory (ISM)
The ISM is a discrete autoassociative memory that uses

temporally asymmetric learning in addition to standard Hebbian
learning to process sequences (Sylvester, Reggia, Weems, &
Bunting, 2010b). This allows it to store which actions make up
the responses needed for a task, and also the order in which
those actions must be carried out. Importantly, the ISM is capable
of storing multiple action sequences at the same time. This is
accomplished by way of a conceptual division of the ISM’s nodes
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into two sets, the ‘‘cue’’ and ‘‘response’’ nodes. The role of the
cue nodes is to provide the necessary context information to the
network to select from among the stored instruction sequences.
The state of the cue nodes corresponds to the situation the model
is facing. The response nodes are responsible for storing the actual
instructions in each sequence, and thus selecting an action from
those in the given instruction sequence. Each instruction sequence
and each action are represented internally by random bipolar
strings, where an action can belong to more than one sequence.

Although the ISM is divided into cue and response groups, its
nodes are fully connected. The difference between the two types
of nodes lies in their inputs and outputs. Only the state of the
response nodes are output to the decoder and the cue and response
nodes receive different inputs from the encoder. Cue node i’s
external input ei comes from one-to-one topographic connections
from the corresponding node in the encoder associative memory.
These connections allow the cue pattern which has been chosen
by the encoder to be passed on to the cue nodes. Response nodes,
on the other hand, are fully connected to all nodes in the encoder
associative memory. The weights on these connections are trained
using one step of Hebbian learning per instruction to associate
each cue pattern with the first response pattern in that sequence.
The purpose of the connections between the encoder and response
nodes is to bias the ISM towards the first pattern in the sequence.
This is only desirablewhen a new sequence is being selected, so the
gate on these connections is kept closed at all other times. Thisway
the encoder influences the response nodes only in time stepswhen
the controller determines that a new sequence is supposed to be
selected, and is ignored otherwise. More specifically, the external
input to ISM node i is defined by ei = aenci for i ∈ {Cue} and
ei = gconf


k∈enc uikaenck for i ∈ {Response}. Here aencj is the

state of node j in the encoder auto-associative memory, uik is the
connection strength from node k in the encoder auto-associative
memory to node i in the instruction sequence memory, and gconf,
described earlier, is also used for this additional encoder update
gate (not pictured in Fig. 4).

Prior to performing any card matching tasks, the ISM is ‘‘pro-
grammed’’ by storing in it the appropriate instruction sequences
that are needed. Each instruction that is to be stored is assigned to
the ISMone time, and a single step of learning of theweights on the
ISM’s recurrent connections is done, updating its two weight ma-
trices,WISM and VISM. The former is trained using Hebbian learning
and the latter using temporally asymmetric learning, as defined by
the following rules:

wij(τ ) = (1 − kISM) wij(τ − 1) +
1
N

ai(τ ) aj(τ ) (1 − δij) (7)

vij(τ ) = (1 − kISM) vij(τ − 1) +
1
N

ai(τ − 1) aj(τ ) (8)

where τ is the training step, ai(τ ) is the activation level of node i,
and N is the number of ISM nodes. Here a⃗ is simply the concate-
nation of a cue and response pattern which make up one of the
distinct actions listed in Table 1. The value kISM can be positive or
negative. When negative, it acts as a gain rather than decay. Nega-
tive values of kISM, which serve to amplify earlier items, have sur-
prisingly been found to be beneficial for the ISM; we use kISM =

−0.3 here.
The dynamics of the ISM during subsequent task performance

involves a two-part update process, first with the asymmetric and
then with the symmetric weights, using

hi(t) =


j

vij aj(t − 1) − θi(t) + ei(t) (9)

fi(t) =


j

wij aj(t) − θi(t) + ei(t) (10)

for node i, where θi is a dynamic threshold that is used to keep the
network from settling permanently into any one attractor basin.
More specifically, if a node’s state has not changed in the
previous time step, the magnitude of θi increases, which means
node i will require inputs with larger magnitudes to remain in the
same state. Specifically, at every time step, θi decays according to
θi(t +1) = (1− kθ ) θi(t) and in any time step in which the state of
node i is unchanged from the previous time step a factor of kw ai(t)
is also added to θi(t + 1). Here kθ = 0.02 and kw = 0.0125 are
used. The input hi computed as above is then used to update the
state of each node according to

ai(t) =


+1 hi(t − 1) > 0
ai(t − 1) hi(t − 1) = 0
−1 hi(t − 1) < 0.

(11)

After updating both a⃗ and θ⃗ , the updating process begins again,
this time using fi(t) computed as above to help the network settle
further into the new attractor basin it was pushed towards by VISM
in the previous stage. The asymmetric weights VISM suffice to get
the network into the next attractor basin; the symmetric weights
WISM impel it into the bottom of that basin, reducing the noisiness
of the recall. This new input fi(t) is then used instead of hi(t)
to update a⃗ according to Eq. (11) again (i.e., the conditionals are
predicated on fi, not hi, this time), and θ⃗ is updated once again.

2.2.4. Conflict module
The purpose of the Conflict Module (see Fig. 4) is to gauge the

level of disagreement in the LocationModule about where to focus
attention. This gives an indication of how many cards are face-up
in the visual field. When no cards are face-up, the Locationmodule
will haveminimal activity, resulting in very low conflict.When one
card is face-up, its location will be the single dominant source of
activity, also resulting in low conflict. However,when twodifferent
card faces are visible, each location will vie for attention, causing
internal disagreement about which to encode. The Conflict Module
monitors for that disagreement, and reports it to the Controller.
This behavior is inspired by the mismatch detection functions of
the anterior cingulate cortex (Brown & Braver, 2005).

By informing the Control Module about how many cards are
face-up, the Conflict Module allows the Controller to choose which
of the three sequences described in the previous section it will
execute. The connection from Conflict to Control Modules is gated;
the signal to open the gate is only sent at the termination of each
of the three instruction sequences. This results in the gate being
open at the next time step, which allows the Controller to assess
which sequence it should begin running. While this gate is closed,
no input is received by the ISM,which allows it to continue running
the current instruction sequence without interruption.

The inputs to the Conflict Module come from 512 randomly
selected pairs of nodes in the Location Module, with each pair
providing one bit of the eventual output. It would of course be
possible to define the overall conflict to be a function of the entire
Locationmodule’s state, but this global calculation over all possible
pairs would be computationally expensive and was found to be
unnecessary. The desired output differs depending on the distance
between the two nodes in a pair. Nodes that are topologically close
in the Location Module should have similar states; there is no
inherent conflict in neighbors agreeing with each other. If nearby
nodes have different states that is an indication of conflicting
representations. In contrast, nodes that are far apart are not in
conflict if they are both inactive, but are in conflict if they are both
active as the latter represents the attempt to encode two disparate
locations at once. The Conflict Module’s final output is effectively
the proportion of sampled pairs of nodes that are either nearby but
in different states or far apart but both active.

Accordingly, the amount of conflict present in the Location
module’s activity is a function of the number of face-up cards being
perceived. A single face-up card requires the Location module to
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Fig. 8. Wiring of a pair of nodes in the Conflict module based on the activities x1
and x2 of two arbitrary nodes in the Location Module. Node A acts as a logical OR
node and node B acts as a logical AND node. There is only one link from A to C and
one from B to C, with theweights on these links depending on the distance between
x1 and x2 in the Location module. The weights labeled on the dotted lines are used
for Location nodes near each other, while the weights on the dashed lines are used
for nodes which are far apart. Horizontal arrows designate bias values.

represent only a single region of space, while two face-up cards
will result in two active representations. In the former case there
will be only a single region of high activity in the Location layer,
which results in a low-conflict ‘consensus’ about the spatial region
to focus on. In the latter case there will be two regions of high
activity in conflict with one another. It is the job of the Conflict
Module to assess the amount of this conflict and report it to the
ISM.

This is implemented as follows. The goal is to output x1 ⊕ x2
if two selected Location module nodes 1 and 2 are within some
topological distance of each other (here ⊕ indicates exclusive or),
and to output x1∧x2 if they are not. To accomplish this, each pair of
nodes is connected by a network like that shown in Fig. 8, with the
weights wCA and wCB set according to the distance between nodes
1 and 2. We use a Chebyshev distance equal to 7.5 to differentiate
between ‘‘near’’ and ‘‘far’’. In other words, if ∥i, j∥ < 7.5 then
wCA = 1 and wCB = −1, otherwise wCA = 0 and wCB = 1.

2.3. Motor system

The Motor System is intentionally very simple, consisting of
only a singlemodule (Fig. 2), because aswith vision, detailedmotor
control is not being studied here. This Motor Module is roughly
analogous to the premotor cortex. It consists of two layers (Fig. 4),
both of which are the same size as the Visual and Location Layers
(55 × 67). The first layer has inputs from the Working Memory
which are encoded using the same methods as the top-down
mechanism linking the Working Memory to the Location module
(i.e., assignedWloc

T). The second layer is connected topographically
to the first, with each node being linked to a 5 × 5 rectangle of
nodes below it, each with a fixed and equal weight. This blurs the
first layer’s representation of the output space, allowing smoother,
less volatile output.

When the controller has signaled that output should be allowed
(i.e., by opening the output gate), we interpret the node with the
maximum activity to be a ‘‘gesture’’ to that particular location on
the table top. If that node corresponds to an area in the visual field
where a card is present, we interpret this as the model ‘‘pointing’’
to that card, which is then ‘‘flipped’’ to reveal its identity.

2.4. Experimental methods

We experimentally assessed whether the galis framework
could successfully solve card matching problems, and if so, how
its solutions compared to two other methods for performing the
task, where performance was measured as the number of rounds
required to remove all cards. The two other approaches to solving
card matching problems that we used as ‘‘gold standards’’ served
as experimental controls for comparison purposes, as follows. First,
in order to assess galis’ performance similarities to and differences
from people, we collected data from human subjects as they
performed a web-based version of the card matching task that
we developed.1 The 34 participants played a total of nine times,
three each with either 8, 12 or 16 cards on the board. This gave us
102 recorded trials for each of the three conditions. The ordering
of trials was randomized for each subject to minimize biases due
to ordering effects. The images used on the human subjects cards
were randomly selected each trial from 10 pairs of national flags.
To remove any potential influence of disparate hues and to better
match the monochrome inputs of the neural model, all of the flags
were composed of red, white and blue only.

The second type of experimental control that we used
involved comparing galis’ neurocomputational approach to a
parameterized top-down symbolic algorithm. To achieve this, we
implemented a symbolic AI system to play a version of the card
matching task in which we removed all the aspects of vision and
spatial processing, and instead represent each card as a pair of
input integers: one for the location of the card, and one for the
pattern on the card. The symbolic model pursues the following
strategy: At the start of each turn, the model checks to see if it
knows where a matching pair of cards are. If it does, that pair is
removed from the board. If not, it randomly selects a card from a
location which is not in its memory. If the location of the matching
card is inmemory, the pair is removed, otherwise a second random
location is chosen (and if by chance the two randomly selected
cards match, they are removed). Any time the model sees an
overturned card, the card is added to memory.

In order to make the performance of the symbolic systemmore
comparable to that of humans, we included a modifiable decay
factor δS affecting its memory. On each turn of play, items in
memory may be deleted with a probability equal to this decay
rate δS. When δS = 0.0 there is no decay, and the symbolic
model plays perfectly. (That is, on average it does as well as is
theoretically possible given randomcard placement and selection).
When δS = 1.0 the symbolic model has no memory at all, and
it plays by random guesses. Intermediate values of δS allow us to
produce intermediate behaviors, while extreme values allow us to
compare galis to both theoretically optimal performance (δS = 0)
and random performance (δS = 1).

The galis results presented below are averages from 200
simulation runs of the model. In each case the model’s ISM was
pre-trained on the necessary instructions, whichwere identical for
all three task variants. With 8 and 12-card variants, the locations
of the cards were randomly chosen from among the positions used
for the 16-card case.

3. Results

The primary result of this work is that the galis system suc-
cessfully solved every one of the hundreds of randomly-generated
card matching tasks on which it was tested. The number of
rounds it needed to complete the task, averaged over 200 runs
for each number of cards n initially present, were 8.7, 13.0 and
21.2 for 8-, 12- and 16-card versions, respectively. This compares
to mean human scores for our subjects of 7.9, 13.5 and 18.9. These
results with our galis systemwere achieved with a single working
memory decay rate δN = 0.125, i.e., it was not necessary to adjust

1 This can be accessed at http://www.jsylvest.com/cards/.

http://www.jsylvest.com/cards/
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Fig. 9. Performance of the symbolic model on all three card matching task
versions with varying decay rates. Note that as decay increases, both the expected
performance (rounds needed) as well as deviation in performance increases. Based
on 200 runs of the symbolic model for each value of the number of cards n. Error
bars represent standard deviations.

the parameters, structure or instructions of the model in any way
to perform across all the three conditions.

Prior to comparing our galis model to the top-down symbolic
model that serves as an experimental control, we first examined
how varying the symbolic model’s decay rate δS affected its perfor-
mance. The results can be seen in Fig. 9. In all three task versions,
both the average and the standard deviation of the number of
rounds needed to complete the task increased superlinearly with
the decay rate. Results from 200 runs of the symbolic model
showed the closest fit to human subjects for the n = 8, 12, and
16-card conditionswhen the symbolic decay rate δS = 0.475, 0.40,
and 0.30, respectively. This is consistentwith analogous findings in
past computational studies where decreased decay was correlated
with increasedworkingmemory span (Altmann&Gray, 2002; Reg-
gia et al., 2009; Winder et al., 2009).

Resultswithgalis (200 runs for each value ofn) are summarized
in Fig. 10. These are compared with both the results from human
subjects and from three instances of the symbolic model—‘‘perfect
play’’ with no memory decay (δS = 0), random play without
any memory (δS = 1), and intermediate play with δS = 0.375,
which was the decay value which provided the best fit to the
human results across all three task conditions. Themeannumber of
rounds it took galis to complete the task increased as n increased,
consistent with human performance and with expectations. Using
both a Student t-test and a Kolmogorov–Smirnov test, we find no
statistically significant difference at the p = 0.05 level between
the galis model’s performance and that of human subjects or the
best-matching symbolic model on both the 8- and 12-card
conditions (of course, a non-statistically significant difference in
performance can still be meaningful). The galis model performed
somewhat worse than humans on the more challenging 16-card
version, as did the best-matching symbolic model. In this task
condition the neural model slightly out-performed the symbolic
model, but not at a significant level.

As expected based on the symbolic model and previous
studies of attractor network-based working memory, a decrease
in working memory decay rate δN was helpful as the problem
size grew larger. The galis models were able to match human
performance on n = 8 and n = 12 with a decay rate of 0.125
– i.e., adjusting this parameter was not necessary to fit data from
both task versions – but optimal performance was observed when
Fig. 10. Mean and standard deviation for human subjects, as well as symbolic and
galis models on the card matching task for the n = 8, n = 12 and n = 16
conditions. For all three n conditions the decay rate of the galis model was 0.125.
Results from the symbolic model are shown when it experiences no decay to its
memory (‘‘perfect play’’), a decay rate of 0.375 (best fit to human performance),
and complete memory decay (random play). By adjusting the decay rates of both
models it was possible to produce better fits to the human data, but the values used
here provided the best fit across all three n conditions without varying the decay
rate. The difference between the human results and those of the galis model and
the best-fitting symbolic model are significant only in the n = 16 condition.

δN = 0.15 and 0.10, respectively. That is, a marginally lower decay
rate increased memory capacity to allow for additional cards to be
recalled. The associated and unavoidable trade-off is that reduced
decay leads to increased interference between items in memory.
The best performance on the n = 16 condition occurred with δN =

0.025. This low level of decay was still unable to increase capacity
sufficiently to match the human responses. Any lower values lead
to dramaticallymore interference andworse performancewith the
network sizes used, while higher decay values produce too much
decay and worsen performance.

In order to investigate the causes behind the galis model’s
less accurate match to human performance levels under the
most challenging task condition where n = 16 we constructed
histograms of the performance for both humans and the neural
model. These, along with a kernel density estimate (KDE) for
smoothing, are shown in Fig. 11. As can be seen in the right subplot
for n = 16, the difference between human and galis performance
is largely due to a thicker right-hand tail on the distribution of
galis results. Without these outlying runs (which also occurred
with human subjects, but less prominently, and which required
over 40 rounds to complete), there was no statistically significant
difference from the human results.

Fig. 12 shows a similar plot with the bars omitted for the
n = 16 variant, with human performance, galis results, and
results from the symbolic model with two different decay rates.
When δS = 0.35 there was no significant difference between the
performance of the symbolic and galis models, and both were
worse than the human level. The symbolic model was able to
decrease the numbers of rounds needed by lowering its decay
rate to 0.3. This slight parameter shift was all that was needed to
cause the symbolic model to go from matching the galis model
to the human performance level for n = 16 (but not for other
values of n). This indicates a partial cause behind the galismodel’s
inability to match human results on this task version: galis’ decay
rate was already set very low, allowingmore interference between
the increased number of patterns retained early on in its working
memory when n = 16, and thus impairing its performance.
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(a) n = 12. (b) n = 16.

Fig. 11. Histogram of human (dark gray bars) and galis (light gray bars) performance on 12-card and 16-card task versions. Also given is a curve showing a smoothed
estimation of each histogram using Gaussian kernel density estimates (KDE). Human results are the solid lines, and galis results are the dashed lines.
Fig. 12. Kernel density estimates on the 16-card task for human subjects and the
galismodel compared to the symbolic systemwith two different decay rates.When
δS = 0.3 the symbolic systemand humanperformancematch, and both outperform
the galismodel. Increasing the symbolic system’s decay rate to δS = 0.35 shifts its
performance curve to the right, causing it to be statistically similar to that of the
galis model. Note also that the performance distribution of the symbolic model
displays the same positive skew as do humans and galis models, and that the
skewness increases with higher decay values.

Fig. 13 shows an observation of this pattern. The shaded area
in the middle of the plot shows a non-parametric estimate of
the average performance of 100 galis simulations with n = 16
(Hsiang, 2013). Two particular runs of our galis model are also
shown. The lower line shows one runwith a final score of 17, while
the simulation represented by the upper line took roughly twice as
many turns to finish. The difference is entirely due to the inability
of the latter to find the firstmatching set of cards among the 8 pairs
on the board. After this hurdle is cleared the remaining pairs are
identified even more rapidly than they are in the high-performing
example. This early plateau pattern was characteristic of the few
poor-performing simulations that made the galis model’s results
not precisely match those of our human subjects when n = 16.
Examination of these outlier runs showed that the controller was
working precisely as it was trained to do, but that by chance the
same location cards were being re-picked frequently early on. The
algorithm in Table 1 does not adequately anticipate this possibility,
allowing it to occur in a few percent of the simulations and thus
Fig. 13. A visually-weighted regression of the model’s average performance
over time in 100 runs of the 16-card task variant (gray shading), along with
the performance curves of one high-performance run and one low-performance
run (lower and upper lines, respectively). The shading represents the width
of the confidence interval surrounding the performance, as determined by a
nonparametric bootstrap estimate (Hsiang, 2013).

biasing the model’s performance overall to take a bit longer than
humans do in this case.

4. Discussion

The fundamental issue addressed in this work is whether
there is an identifiable core set of general-purpose, region-
level functions and interactions that can be used to engineer
neurocognitive architectures for high-level cognitive tasks. Our
hypothesis is that the galis framework provides such a set of key
functions and interactions: a region-and-pathway architecture
inspired by the organization of the human cerebral cortex having
neural regions that each serve as attractor networks that are
able to learn temporal sequences, and neural regions that not
only learn to exchange information but also learn to turn on/off
the functions of other regions. The idea of simulated cortical
regions that can gate one-another’s activations, learning and
communications is related to past work that has focused on
understanding/modeling cognitive control of working memory
via gating operations (Frank et al., 2001; O’Reilly & Frank, 2006;
Sherman & Guillery, 2006). Our approach differs from these
previous studies in not using biologically-realistic spiking neurons,
its focus on generalizing gating to all module functions (activity
retention/updating, learning, inter-region activity flow, etc.), and
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in allowing cortical regions to directly gate the behavior of other
cortical regions without explicitly modeling subcortical brain
structures (basal ganglia, thalamic nuclei, etc.).

The concept that one cortical region may directly/indirectly
gate the activity of other cortical regions is an especially critical
aspect of the work we have described here. While galis is agnostic
about the potentialmechanisms thatmight implement such gating
biologically, this is an issue of much recent and ongoing interest in
the cognitive neurosciences. Gating interactions might be brought
about in part by direct connections between regions, such as
the poorly understood ‘‘backwards’’ inter-regional connections
that are well documented to exist in primate cortical networks
(van Essen et al., 1992). Further, there is substantial evidence
that gating occurs in part indirectly via a complex network
of subcortical nuclei, including those in the basal ganglia and
thalamus (Frank et al., 2001; Sherman & Guillery, 2006; van
Essen, 2005), and/or via functional mechanisms such as oscillatory
activity synchronization. Synchronization has been postulated to
be an effective way to dynamically gate information flow between
cortical areas (Singer, 2011), and this may contribute to top-down
attention mechanisms (Womelsdorf & Fries, 2009). A recent
review outlines the many ways that oscillatory activity, acting
via multiplicative modulation, can direct selective inter-regional
communication or ‘‘multiplexing’’ between brain regions (Akam
& Kullmann, 2014), something that is consistent with the
multiplicative gating implementation used in parts of galis
systems. While gating has been used in some previous models
of working memory control, such past work has generally
incorporated explicit neuroanatomical models of hypothesized
subcortical nuclei and their interconnectivity to implement gating
actions (e.g., Frank et al., 2001; O’Reilly & Frank, 2006). In
contrast, in thegalis framework the details of implementing gating
actions via complex subcortical circuity, synchronized cortical
oscillatory activity, or other mechanisms are suppressed. Instead,
the framework assumes such mechanisms exist and implements
them as direct gating interactions between model cortical regions
and the pathways that inter-connect these regions.

In the work described in this paper, we have substantially
tested our basic hypotheses by applying the galis framework
to solving challenging card matching problems, a type of prob-
lem that is readily addressed by top-down symbolic methods but
not by widely used neurocomputational methods. Performing this
task requires, among other things, the ability to deal with repre-
senting external entities and their locations in space, the ability
to support a robust working memory of previously seen cards,
the ability to bind together distinct pieces of information about
the environment, the ability to interpret and generate sequential
events, and the ability to exert top-down attention control and ac-
tion selection. Such abilities are readily achieved with traditional
top-down AI symbolic systems, but have proven to be extremely
challenging for neural architectures (Martinet, Sheynikhovich,
Benchenane, & Arleo, 2011; Trullier, Wiener, Berthoz, & Meyer,
1997), and go far beyond the modeling of working memory that
was attempted with galis previously (Sylvester et al., 2013). In
ways, our workwith the galis framework relates to the longstand-
ing idea of ‘‘connectionist implementationism’’, bywhichwemean
the hope that neurocomputational methods will provide a mecha-
nistic account of cognition that goes beyond that provided bymore
conventional computational approaches (McClelland, Rumelhart,
& Hinton, 1986). Our work with galis is a step towards showing
that neurocomputational systems offer a means for implement-
ing cognitive functions using distributed representations at a sub-
symbolic level, in particular in capturing the ‘‘distinctly sequential
character’’ of cognition that involves state-to-state transitions
(McClelland et al., 1986). We believe that our work here con-
tributes something new to this discussion: It demonstrates that
the specific postulates of the galis framework—that the critical in-
gredients to implementing cognitive functions are neural modules
that learn procedures represented as itinerant attractor sequences,
and that these regions should interact not only via the exchange of
information but also by gating one another—are viable candidates
for aspects of the neurocomputational microstructure underlying
the macrostructure of cognition.

The results presented here provide significant support for the
galis hypothesis that one can engineer high-level problem-solving
systems based on regions that are attractor networks and that have
the ability to gate the functionality of other regions and pathways.
Specifically, we found that such neurocognitive architectures
could readily learn to solve card matching problems. Further, the
number of steps (card selections) it made during problem solving
qualitatively increased with problem difficulty in a fashion similar
to that seen when we had a group of human subjects solve this
problem. In two of three task conditions our model’s performance
and the performance we observed with the human subjects we
studied matched quantitatively. However, this match deviated in
the third condition with the largest number of cards, a significant
limitation of our work indicating that our model is not yet fully
‘‘human competitive’’. Why did this happen?We believe that there
are multiple potential factors that may come into play as the
number of cards increases, as follows.

First, as described in the Results section above, our analysis
indicates that one important reason for the deviation was that
the author-generated instructions the system was trained to
performwere not optimal. The trained systemwas very accurately
executing the ‘‘program’’ it was instructed to perform correctly,
but as often occurs with conventional software development, the
‘‘code’’ was not optimal. A second possible factor may simply
be the limited size of the working memory and ISM modules
in our model when compared to those of the human brain.
Size limitations like these can result in increased interference
between stored patterns and thus decreased memory capacity.
Finally, another intriguing possibility is that some additional
unknown human memory mechanisms, not captured in the galis
framework, could be coming into play as the scale of problems
increases. A candidate mechanismmight relate to the adaptability
of weight decay that influences memory capacity. We examined
the influence of working memory decay on our card task system
and found that while adjusting the rate was not required in
order to qualitatively match the behavior of human subjects,
doing so did allow closer fits to the data. This corresponds to
past theoretical hypotheses about the role of memory decay on
working memory capacity management (Winder et al., 2009).
Importantly, from our engineering perspective of wanting to
implement high-level problem solving systems with purely
neurocomputational mechanisms, none of these limitations are
failures of GALIS’s underlying principles. Instead they suggest that
there are important research issues to be tackled in the future.
For example, future research is needed to determine the effects
of memory capacity on galis systems’ performance, to give galis
systems the ability to modify their originally-learned instruction
sequences based on problem solving experiences, and (in cognitive
psychology) to gain a better understanding of the relative roles
of decay and interference in human memory mechanisms via
behavioral experiments.

Our neurocognitive system for card matching is composed en-
tirely of components based on neural network methods that use
distributed subsymbolic representations. The finding that this sys-
tem can perform cognitive problem-solving operations of the sort
performed by traditional AI symbolic methods is both encouraging
and, we believe, highly significant. Such cognitive control abilities
are widely recognized to be challenging for neural computa-
tional methods. In a sense, our approach provides a synthesis of
continuous neurocomputational representations and symbolic AI
representations. Even though our approach uses only neural infor-
mation processing, the fact that it allows one to ‘‘program’’ a neural
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network with a sequence of high-level instructions creates a sim-
ilarity to the traditional von Neumann architecture computer.
Further, even though the attractor networks operate in a high-
dimensional, continuous state space, each attractor within that
space exists as a discrete entity (Simen& Polk, 2009), and the use of
gating allows for hard-cutoff binary distinctions to be made (open
vs. closed communication channel, active vs. quiescent region, up-
dateworkingmemory vs.maintain its current contents, learn vs. do
not learn, etc.). As a result, galis networks offer a balance between
the continuous nature of neural networks and the discrete nature
of symbolic systems. Gating also has the further benefit of provid-
ing a way to balance the dual needs of maintaining stability of a
network’s state and for being able to rapidly switch states (O’Reilly,
Noelle, Braver, & Cohen, 2002), a key requirement that has long
been recognized as important in biological cognitive control sys-
tems (Goldman-Rakic, 1987).

Our work here can be compared to several past related stud-
ies of neural systems for working memory and cognitive control.
Neural networks have been widely used to model cognitive con-
trol (e.g., Botvinick & Plaut, 2006; Kaplan, Sengör, Gürvit, Genç,
& Güzeliş, 2006; Pascanu & Jaeger, 2011; Ponzi, 2008; Verduzco-
Flores, Ermentrout, & Bodner, 2012). Many of these, such as
c-sob (Lewandowsky & Farrell, 2008), concentrate almost exclu-
sively on the working memory aspect of cognitive control and rely
on themodeler tomake decisions aboutwhen to updateweights or
how toproduce output.Most of themodelswhich incorporate their
own cognitive control methods do so by structuring their architec-
ture very specifically to the task at hand. One notable exception is
the pbwm architecture (Rougier, Noelle, Braver, Cohen, & O’Reilly,
2005), which is able to iteratively learn rule-like sets of internal
representations that guide its pattern classification decisions. An-
other is the work of Cutsuridis and Taylor (2013), which like galis
incorporates the use of dual visual pathways for object–location
integration. Other very recent work has differed from galis in em-
phasizing the role of reinforcement learning in cognitive control
(Zendehrouh, 2015) or in the use of self-organizingmaps as awork-
ing/episodic memory mechanism (Takac & Knott, 2015).

Our work with galis also relates to several past studies
done in the cognitive architectures literature. For example, like
with symbolic AI, systems such as soar (Laird, 2012) and
act-r (Anderson et al., 2004) have dealt extensivelywith high-level
cognition,workingmemory, and cognitive control. These issues are
primarily and successfully addressed by cognitive architectures via
the use of production rules. Our work is complementary to these
past studies in that the galis framework tries to capture similar
functionality using purely neurocomputationalmechanisms rather
than symbolic production rules. The distinction made between
explicit and implicit knowledge in the cognitive architecture
clarion is particularly illuminating in this regard (Sun & Naveh,
2004;Wilson, Sun, &Matthews, 2009). Clarion primarily captures
the explicit processing of cognitive control and working memory
operations using symbolic rule-based ‘‘localist’’ representations. In
contrast, it captures relatively inaccessible implicit knowledge as
distributed representations in neural networks. No other system
that we know of better illustrates the complementary nature of
symbolic and neurocomputational methods that we discuss at the
very beginning of this paper. Further, the ideas in galis of regions
that interact and gate one another are similar in ways to the
modules and their interactions in cognitive architectures such as
clarion. From this perspective, ourworkwith thegalis framework
is striving to identify and study the key neurocomputational
mechanisms that are needed to capture explicit processing
operations using solely neural networks.

While the successful use of the galis framework to solve
card matching problems is very encouraging, much further work
is needed to assess this approach and extend it to even more
challenging problems (the current model would even need some
extensions to its input and output configurations to be used for the
n-Back task). It will be important to demonstrate that the methods
used here can be adopted to a broader range of problem-solving
tasks typical of those used historically in traditional symbolic AI
systems. In particular, a key issue for future research iswhether the
approach adopted in galis will scale-up to larger, more complex
problem tasks, both in terms of network size and convergence
times. Also, since neither sophisticated image processing nor
motor control was a focus of this work, expanding such portions of
the system to, for example, deal with color and invariance to input
transformations, would of course be important future research
areas. In addition, ‘‘programming’’ a neural network as we have
done here is a fairly new pursuit, and one that would benefit
from finding new methods and tools for analyzing the behaviors
of large-scale complex network architectures.

Both top-down, symbolic AI and bottom-up, neural systems
have achieved impressive results, but each has largely done so
in their own separate application domains. A bridge between
symbolic and neural approaches would be very advantageous, and
the galis framework is one way to advance this bridging. To the
extent that it and other related research is successful, it may even
contribute to a better understanding of the general mind–brain
problem (Reggia et al., 2014).
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