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Abstract

Many neural network models of cognition rely heavily on the modeler for control
over aspects of model behavior, such as when to learn and whether an item is
judged to be present in memory. Developing neurocomputational methods that
allow these cognitive control mechanisms to be performed autonomously has proven
to be surprisingly difficult. Here we present a general purpose framework called
GALIS that we believe is amenable to developing a broad range of cognitive control
models. Models built using GALIS consist of a network of interacting “regions”
inspired by the organization of primate cerebral cortex. Each region is an attractor
network capable of learning temporal sequences, and the individual regions not
only exchange task-specific information with each other, but also gate one another’s
functions and interactions. As a result, GALIS models can learn both task-specific
content and also the necessary cognitive control procedures (instructions) needed to
perform a task in the first place. As an initial test of this approach, we use GALIS
to implement a model that is trained simultaneously to perform five versions of
the n-Back task. Not only does the resulting n-Back model function correctly,
determining when to learn or remove items in working memory, but its accuracy
and response times correlate strongly with those of human subjects performing
the same task. The n-Back model also makes testable predictions about how
human accuracy would be affected by intra-trial changes in n’s value. We conclude
that GALIS opens a potentially effective pathway towards developing a range of
cognitive control models with improved autonomy.

Keywords: cognitive control, working memory, n-back, Hopfield attractor
networks, adaptive gating, temporally asymmetric Hebbian learning
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1. Introduction

“Cognitive control” is an umbrella term for those executive cognitive
systems that manage other cognitive processes, such as working memory, plan-
ning, attention, inhibition, and action selection. Building neural architectures
capable of modeling cognitive control processes is increasingly recognized
as an important research direction (Roy, 2008). However, developing such
architectures has proven to be surprisingly challenging. Neural systems cur-
rently excel at problems that make use of strengths like pattern matching
and incremental learning (Omlin & Giles, 2000), but they often struggle with
problems requiring executive behaviors such as representing the goals and
rules of a task or constructing and carrying out procedures (Marcus, 2001).
In contrast, symbolic AI systems face little difficulty with incorporating ex-
ecutive behaviors (Simen et al., 2010), due to the ease with which they can
bind variables, create data structures, and perform global computations. This
divergence in ability is particularly odd since biological neural systems do not
experience the same difficulty that artificial neural networks do. For instance
a person can typically play a novel card game merely after hearing the rules
described, but a neural network might have to witness the game being played
thousands of times before it can play it on its own. Why are cognitive control
functions such as focusing on a goal state so easy for symbolic systems and
living beings, but so difficult for artificial neural networks? It stands to reason
that it should be just as possible for neural networks to perform these tasks
as it is for the biological counterparts from which they draw inspiration.

There has been increasing interest during recent years regarding biolog-
ically-inspired computation that addresses these issues. Rather than just
using neural networks as tools for applications at which they excel (pattern
matching, character recognition, system control, etc.), many researchers are
looking to understand the brain’s computation from the bottom up, leveraging
the link between neural AI systems and the brain. Examples of this interest
are recent conferences (BICA, AGI, etc.), and research programs such as
those as DARPA and IARPA. The growing interest in biologically-inspired
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computation has led, among other things, to the development of pioneering
neural models that explicitly incorporate aspects of cognitive control, such
as for managing working memory (O’Reilly & Frank, 2006) and for planning
solutions to the Towers of London problem (Dehaene & Changeux, 1997).

However, many such neural models are hard-wired for the particular task
for which they are designed (Stewart et al., 2010), connection strengths
are often set by hand without a learning procedure, and local conjunctive
encodings are often used (Frank et al., 2001), specifying the exact sets of
possible inputs and outputs and making adaptation to other situations,
contexts or environments tricky. This specialization can make neural network
models of cognitive control difficult to build, because each model requires not
only parameter tuning and other human supervision, but often construction
from the ground up. Even small changes in the task specifications can require
large modifications to the architecture. For instance, the model for solving
the Towers of London problem in Dehaene & Changeux (1997), while capable
of an impressive amount of planning for a neural network, is incapable of
solving the very similar Towers of Hanoi problem, or even of solving Towers
of London using a method other than the greedy, depth-first search it has
been constructed to execute. What would be helpful is the development of a
general purpose, adaptive approach that, building on the successes of past
specific implementations of cognitive control mechanisms, can be used for a
broad range of applications.

In this paper, we describe an approach to building models of cognitive
control for working memory tasks which we call GALIS, for “Gated Attractors
Learning Instruction Sequences.” GALIS is intended to be a general-purpose,
adaptive neurocomputational architecture that learns how to perform tasks,
including tasks that themselves involve learning, within which models for
specific tasks can be instantiated. Our goal is not to provide a veridical
model of the neurobiology underlying human cognitive control; rather, we
are taking inspiration from cerebral cortex to create a general computational
framework that can be used effectively to create a broad range of neural
architectures for specific tasks. In the following, we discuss some past related
work (Section 2) before describing our vision for the GALIS framework in
general terms (Section 3). The remainder of the paper focuses on a first test
for this framework. In particular, we use GALIS to develop a system for the
specific task of controlling working memory during performance of n-Back
tasks where the parameter n can change dynamically during task performance
(Section 4). We show that this n-Back system not only works, but that at
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least on some measures, it also performs similarly to human behavior, and it
makes testable predictions that could falsify the model (Section 5). Finally,
we discuss the current state of the GALIS framework and future directions
for its expansion (Section 6).

2. Past Related Work

Numerous neural network models of working memory exist (e.g., Burgess
& Hitch, 1999; Botvinick & Plaut, 2006; Blum & Abbott, 1996; Kaplan et al.,
2006; Page & Norris, 1998; Pascanu & Jaeger, 2011; Ponzi, 2008; Verduzco-
Flores et al., 2012). However, these models often have no endogenous control
at all. For example, in approaches such as OSCAR (Brown et al., 2000),
TODAM (Li & Lewandowsky, 1993), SOB (Farrell & Lewandowsky, 2002)
and Itinerant Attractors (Hoshino et al., 1997), all decisions about when to
update weights or assessments about whether an item is in memory are made
externally by a human. Of models with endogenous control, many are quite
specific to their given tasks. Overcoming this specificity has recently become
a goal of multiple researchers, for instance, Frank et al. (2007).

One notable prior neural network model which does have generality as
a goal is that of Rougier et al. (2005). The authors present a model which
is capable of performing a variety of tasks in which the key objective is
identifying the single currently relevant feature, such as variations to the
Wisconsin Card Sort. Using an iterative learning process, the network is
able to discover internal, rule-like representations which allow it to isolate
single features. Importantly, no architectural changes are required to shift
between this set of tasks, and concurrent training on some tasks improves
the ability of the model to generalize to novel stimuli in other tasks. Unlike
with the GALIS framework, Rougier et al. frame their tasks as a form of
pattern classification, using an iterative training regime to learn input-output
mappings. In contrast, the system presented here uses one-shot learning, and
frames each task as a procedure to be executed.

Chatham et al. (2011) use the PBWM architecture to build a model
capable of executing 2- and 3-back tasks at human performance levels. Their
model differs in a number of ways from that presented here. One major
difference is that Chatham et al. present their model with input consisting of
both the letter to be remembered and that letter’s serial order. Furthermore,
the serial order is given to the model as a periodic coding which aligns with
the value of n. So while the model described here receives a stream of stimuli
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such as ASDFSG. . . no matter what the value of n is, Chatham et al.’s
PBWM model receives A1S2D1F2 S1G2. . . if it is supposed to perform
2-back and A1S2D3F1 S2G3. . . if the task is 3-back. Structuring the inputs
this way removes some of the burden from the model to determine which prior
stimuli the current one should be compared to. In addition, it uses an iterative
approach to training, while we use one-shot Hebbian learning. Further, the
PBWM model prevents interference between memories by learning to explicitly
over-write old memories with the new ones which occur at the same position
in the period (so that, for instance, G3 displaces D3 in the example above),
while we use weight decay and Hebbian unlearning to minimize interference
from older, irrelevant stimuli.

A number of past models must confront related problems with scaling.
For example, some working memory models require a separate layer, or set
of layers, for every item which could be stored in memory (e.g., Jones &
Polk, 2002; Stewart et al., 2011). Others require extra layers for every rule or
action (e.g., Simen et al., 2010; Stewart & Eliasmith, 2011). This presents
both a computational problem (because such models scale poorly to more
complex tasks and environments), as well as a plausibility problem (because
it contradicts what is known about the pervasive re-use of biological neural
circuits).

3. The GALIS Framework

GALIS is intended to be a general neurocomputational framework for
modeling learned cognitive control of working memory tasks. By working
memory, we mean the ability to monitor, hold and manipulate information
that is needed for performing tasks over the short term (Durstewitz et al.,
2000). Working memory is of very limited capacity, short duration, and
subject to both decay and interference (Cowan et al., 2005); it must strike a
balance between the ability to update rapidly and the competing demand to
remain fixed in the presence of spurious or distracting information.

While GALIS is not intended to be a veridical neuroanatomical/physio-
logical model of the brain circuitry underlying cognitive control, it is strongly
inspired by contemporary views of the organization and functionality of
primate cerebral cortex. Specifically, GALIS is derived from three main
hypotheses about how cerebral cortex directs working memory, as follows.

The first hypothesis is that the cerebral cortex is organized as a distributed
network of interacting cortical regions. Such a hypothesis is supported by a
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broad range of scientific evidence (Bressler & Menon, 2010; Sporns, 2011; van
Essen et al., 1992). The implication for GALIS is that all aspects of working
memory contents, both static information that captures task-specific details
and dynamic procedures for performing a task, are stored within a network of
model regions. In other words, model cortical regions must learn not only the
“facts” about a specific instance of a task, but also the procedure or “software”
that is needed to perform that task. Thus while GALIS models have dedicated
substructures to carry out certain procedures, such as judging the similarity
of two patterns, the behavior of these models is largely based on the patterns
that are learned by its control memory. This focus on making behavior
largely dependent on patterns stored in the network’s memory, rather than
on the network’s structure or “hardware,” is a break from previous models of
cognitive control, and is intended to make GALIS models more generalizable:
their behavior can be changed by adjusting which sequences are learned
rather than by adjusting the structure of the model itself. This also allows a
model’s behaviors to be dynamically modified during task performance (Long
et al., 1998) by adding or removing items from the instruction memory rather
than changing the network architecture, something that is an important step
toward full autonomy.

The second hypothesis is that each region in the cortical network can
usefully be viewed as an attractor neural network, i.e., as a dynamical system
whose activity is continuously being driven towards certain preferred states.
Attractor networks have been used previously in cognitive control models (e.g.,
Jones & Polk, 2002; Farrell & Lewandowsky, 2002; Hoshino et al., 1997), but
usually they are limited to dealing with only fixed-point attractors. However,
if working memory is to accomodate procedural information that supports
cognitive control, it must also be able to store attractors that are temporal
sequences. In other words, a model region must be capable of switching
dynamically from one fixed point attractor state to another. Various tech-
niques have been used to add dynamism like this to attractor nets, including
dynamic thresholds, negative feedback, and Hebbian unlearning (Brown et al.,
2000; Horn & Usher, 1992; Katori et al., 2011; Tsuda, 2001; Winder et al.,
2009). Model cortical regions in GALIS consist of recurrently connected
neural networks that use temporally asymmetric learning of intra-regional
connections weights in a fashion that supports storage of temporal sequences
of actions (Sylvester et al., 2010, 2011).

The third hypothesis is that each cortical region can not only exchange
information with other cortical regions in the form of activity patterns, but can
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also gate other regions’ functions and interactions. By gating here we mean
that a cortical region can turn on/off functions in other regions, or open/close
the flow of information between other regions, and that this is a core aspect
of cognitive control. Such gating interactions might be brought about in
part by direct connections between regions, such as the poorly understood
“backwards” inter-regional connections that are well documented to exist in
primate cortical networks (van Essen et al., 1992). However, these gating
actions more likely occur indirectly between biological cortical regions, being
implemented via a complex network of subcortical nuclei, including those
in the basal ganglia and thalamus (Frank et al., 2001; Sherman & Guillery,
2006; van Essen, 2005), and/or via functional mechanisms such as activity
synchronization. Synchronization has been postulated as an effective way to
gate information flow between cortical areas (Singer, 2011), and this may
contribute to top-down attention mechanisms (Womelsdorf & Fries, 2009).
While gating has been used in some previous models of working memory
control, such past work has generally incorporated explicit neuroanatomical
models of hypothesized subcortical nuclei and their interconnectivity to
implement gating actions (e.g., Frank et al., 2001; O’Reilly & Frank, 2006). In
contrast, in the GALIS framework the details of implementing gating actions
via complex subcortical circuity, synchronized cortical oscillatory activity,
or other mechanisms are suppressed. Instead, the framework assumes such
mechanisms exist and implements them as direct gating interactions between
model cortical regions and the pathways that inter-connect these regions.

In summary, inspired by the organization of the cerebral cortex, our ap-
proach to learned cognitive control is to build a network of regional neural
networks, linked together by gated connections. GALIS models incorporate
at least two different types of memory systems: those that store task spe-
cific state information (task memory), and those that store the actions and
procedures necessary for performing the task (control or instruction mem-
ory). Both types of memory are implemented as discrete attractor networks
and operate according to the same rules. The adaptive gates throughout
GALIS networks control how activity flows between regions. In addition,
gates are used to control when connection weights are updated. By opening
and closing its gates, a GALIS network can determine when and whether to
learn and unlearn stimuli. At the present time, we are also using distributed
rather than local representations and one-shot Hebbian learning rather than
error-backpropagation, both of which are intended to increase the biological
plausibility of the GALIS approach.
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Is the GALIS framework an effective approach to creating models of
cognitive control? The claim that it is effective is falsifiable: if one cannot
successfully construct a model for a specific working memory task within
the framework, that would indicate that the three core hypotheses that it is
based upon are insufficient. As a first step in testing the adequacy of this
framework, we have used it to implement a specific model that performs
multiple versions of the n-Back task. This model is capable of determining
when to learn or remove items in working memory, as well as of assessing
the contents of its memory and comparing them to external stimuli. Control
is exercised endogenously, and behaviors are based on the contents of an
instruction memory that learns and stores the actions necessary for the task.
The next two sections of this paper describe this n-Back model and the results
obtained with it. The work reported here greatly extends a preliminary report
done as a pilot study with a much simpler toy “store and retrieve” memory
problem (Sylvester et al., 2011). It establishes for the first time that GALIS
models can learn to perform a more difficult, real-world working memory
learning task that is widely used in cognitive psychology.

4. Methods

The GALIS model of n-Back works on tasks in the context of a sequential
stream of visual inputs. In an n-Back task, the participant is presented with a
stream of stimuli and must identify which of these is the same as the stimulus
presented n steps earlier. For example, in a 3-back task the bold letters in the
following sequence would be considered matches: VHZVXOL IO SA JXAO.
Following each letter (except the first n), the participant must give either
a match or no-match response. The n-Back task is of significant interest in
cognitive psychology (Owen et al., 2005). It is commonly used in brain imaging
studies (e.g., Watter et al., 2001; Schmidt et al., 2009), correlated with general
intelligence (Jaeggi et al., 2008), and used for training to improve working
memory capacity (Jaeggi et al., 2010). The remainder of this section gives an
overview of each component of the GALIS model for n-Back, describes how
it operates to process stimuli, and covers details of the internal structure of
the control module. Further details are given in the Appendix.

4.1. Top level architecture for n-Back tasks

The GALIS model for performing n-Back tasks consists of several interact-
ing regions, as seen in Figure 1. They are the visual input layer, the n-input
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Memory Training Gate!

Memory Input Gate!

Context Gate!

Encoder Update Gate!

Visual Input!

Compare!

Module!

“Match”!

Output Node!

“No-Match”!

Output Node!

Output Gate!

Memory Unlearning Gate!

n Input!

(“goal”)!

Context!

Module!

Control!

Module!

Working Memory!

Figure 1. The GALIS model as used for the n-Back task. Thin, solid
arrows denote one-to-one connections. The working memory layer is fully
recurrently connected (broad arrow). Dotted lines are the outputs of the
control module. Note that the number of boxes pictured in each layer is an
approximation only, and does not faithfully represent the number of nodes
used in the model.

layer, the output nodes, the memory layer, the compare module, the context
module, and the control module.

Nodes in the visual input layer are set externally to represent the visual
stimulus being presented during the current time step. Visual stimuli take the
form of 128-bit, randomly selected bipolar patterns. Patterns are generated
such that each input has an equal chance of being either 1 or -1. There are
no constraints placed on inter-pattern distances. For ease of discussion we
refer to visual stimuli as “letters,” as in the example sequence given above.

The n-input layer is a second input layer which is used to specify the cur-
rent goal of the model. This module is a stand-in for goal-related information
that may be represented biologically in the rostral prefrontal cortex (Charron
& Koechlin, 2010), and which we intend to add in a future extended version
of GALIS. In the case of modeling the n-Back task, this n-input layer encodes
which particular version of n-Back the model should currently be perform-
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ing (i.e., the current value of n). One of five different distributed patterns is
used to indicate whether the model’s current objective is to perform 1-, 2-,
3-, 4-, or 5-back. The five specific patterns used are random bipolar patterns
chosen in advance. Note that the model learns to execute all five versions.
Which version is executed in a specific situation depends only on changing
this input, not on retraining or reconfiguring the model in any way. While
the input layer used for this example selects only among the relatively limited
set of five versions of n-Back, we plan on extending GALIS to use the same
input mechanism to enable it to select between a wider array of tasks and
objectives.

Two linear threshold units are used for model output, one each for match
and no-match, indicating whether the present stimuli is the same as the one
n steps previously. The inputs to both nodes are gated. They can only be
activated when the control module has opened the Output gate.

The working memory layer is a discrete Hopfield network forming an
auto-associative memory (Hopfield, 1982). Like biological working memories,
the GALIS working memory layer has limited capacity (McEliece et al.,
1987), high plasticity via one-shot learning (Sandberg et al., 2003), and
close integration with executive systems. Additionally, the working memory
layer has been modified from standard Hopfield networks to include dynamic
thresholds, weight decay (Reggia et al., 2009; Winder et al., 2009) and
temporally asymmetric weights, which enable it to recall a temporal sequence
of stored patterns in a specified order rather than randomly (Sylvester et al.,
2010, 2011). The working memory layer is the same size as the visual input
layer, and its nodes are bipolar valued. The working memory layer is treated
in more depth in Sections 4.2 and A.1.

The compare module is used to compare the visual input layer to the
current state of the working memory, to assess if the current stimuli and
recalled stimuli match. Depending on the similarity between the two, it will
send activity to one of the two output nodes. Please refer to Appendix Section
A.4 for details.

The context module allows the control module to keep track of what stage
of processing it is in. Processing each new stimulus occurs in two stages,
called start and finish. During the start phase, the new stimulus is added to
the working memory contents. During the finish phase the working memory
contents is searched to determine if that new stimulus is a match with the
n-Back item. The control module adjusts, via the Context Gate, the state of
the context module to indicate the current stage. This state information can
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then be output back to the controller, allowing the controller to affect its own
inputs in the following time step and giving it greater flexibility than if it were
to respond only to the current input.1 In effect, this gives the controller the
ability to select its own short-term sub-goals to be carried out in the following
time step, similar to the Endogenous Goals layer of codam (Korsten et al.,
2006). Details are given in Appendix Section A.5.

The final component is the control module, which is responsible for
directing the operation of the rest of the system. It takes input from the
n-input layer and context module, and its outputs drive the six gates which
govern flow of activity and updating of weights throughout the rest of the
model. The core of the control module is a second discrete Hopfield attractor
network, called the “instruction sequence memory” (ISM). Like the working
memory attractor network, the instruction sequence memory stores sequences
using temporally asymmetric weights. But where the working memory module
stores visual stimuli, the control module stores the actions necessary for
completing a task. Both the working memory and ISM are based on the same
weight update, input and state update rules. Reusing the same principles for
both data and instruction storage makes GALIS particularly parsimonious.
However, the ISM has been modified to store multiple sequences concurrently.
Each sequence corresponds to a particular set of actions the model may need
to perform during a task. For instance, with n-Back, one such sequence of
actions would be used to add a new stimulus to working memory. Each
component action takes a single time-step of the simulation to execute, and
corresponds to a particular set of signals to open and close different gates to
different degrees.

The control module has two other components besides the ISM, an input
“encoder” and output “decoder” (see Figure 2). They serve as heteroassociative
memories that translate the inputs to the control module into the particular
patterns stored in the ISM, and then translate the response of the ISM into the
controller’s final outputs. This pre- and post-processing is done primarily to
mitigate the effects of noise and crosstalk and to enable the control module to
convert between inputs, stored patterns, and outputs of differing dimensions.
Details on the control module can be founds in Sections A.2 and A.3.

1The context module could be considered as part of the control module, but we indicate
it separately here to facilitate explanation. In addition, separating the two increases the
modularity of GALIS models by allowing the control module to be agnostic about the
source of its inputs.
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Figure 2. Slightly expanded control module showing its gated input
encoder and output decoder which function as heteroassociative memories.

Control Outputs and Gating. The control module manages the behavior of
the model through a system of gates. The outputs of the control module are
used to open and close these gates, which in turn modulate the flow of activity
between layers and regulate the weight updates in the working memory layer.
The six gates which control the flow of activity throughout the n-Back model
can be seen in Figure 1. They are:

1. the Memory Input gate, between the visual input layer and working
memory layer that biases the memory’s current state towards or away
from the current stimulus;

2. the Output gate which controls the flow of activity from the compare
layer to the output nodes;

3. the Memory Training gate which controls when the working memory
learns a new pattern;

4. the Memory Unlearning gate which controls when the working memory
removes a pattern from memory;

5. the Context gate which regulates the state of the context module; and

6. the Encoder Update gate which governs the inputs to the control module,
so that it can decide whether it updates its own state.

When a gate is open it allows information to flow through it like an open
valve in a water pipe (in contrast to an open switch in an electrical circuit,
which prevents flow). A gate’s state is given by

g(t) = kg g(t−1) + s(t) (1)
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where kg is a decay term, here equal to 0.5, t is the current time step, and
s(t) is the current value of the control module output governing this gate.The
effect of gates is multiplicative, such that the downstream activity of a gated
connection is a product of its incoming activity and its current state g. Gates
have values in [−2, 2], so gates have more nuanced effects than binary states
of “open” and “closed.” A gate can have an amplifying effect on its incoming
value (g > 1.0), a damping effect (0.0 ≤ g < 1.0), or an inhibitory effect
(g < 0.0). Being able to use the same system for both attending to an input
(i.e., amplification) and inhibiting that input is appealing, since the two
effects can be viewed as antipodal (Engle et al., 1995). An exception to this
continuous behavior are the two gates which control learning and unlearning
in the working memory. Because updating the working memory weights is
a discrete decision — a weight matrix is either updated or not in any time
step — these gates have a threshold. Their state is calculated the same way,
and the weights are updated when g > 1 and not updated when g ≤ 1. All
gates are initially closed when the model begins.

In some situations there are many connections being mediated by the
same gate. For instance, the connections between the input and memory layer
are one-to-one. These may be thought of as 128 individual connections each
having their own gate, with each gate having an identical value. The effect
is the same as a single “master” gate controlling all 128 connections based
on a single output from the control module, and so we adopt the convention
of referring to the parallel opening and closing of these 128 connections as if
there is a single gate present.

4.2. Working Memory

The working memory layer is a discrete Hopfield network incorporating
dynamic thresholds and temporally asymmetric weights that permit it to
process temporal sequences as described in Reggia et al. (2009) and Sylvester
et al. (2010). The dynamic threshold keeps the network from becoming stuck
in any single attractor basin during recall by incrementally increasing the
amount of input a node must have in order to stay in the same state. This
allows multiple patterns to be activated serially during recall rather than
having the network settle on a single pattern, as is typically the case with
the fixed-point attractor dynamics of standard Hopfield networks.

The temporally asymmetric weights are formed using a one-shot Hebbian
learning rule which correlates a node’s activity with the activity of the other
nodes during the presentation of the previous input rather than the current
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one, unlike with typical Hopfield networks. By using correlations between
both concurrent and consecutive activity there is the potential for representing
more structured information (Cowan, 1999). In particular, the asymmetric
weights are used here to ensure that the network not only switches between
attractors in its state space, but does so in an order corresponding to that
in which the input patterns were presented. Appendix Section A.1 provides
details on weight learning rules, calculating inputs and updating states.

In addition to adding patterns to working memory, the network also
has the capability to “unlearn” or partially “forget” stored patterns. This
is accomplished using an anti-Hebbian learning rule (Hopfield et al., 1983).
One could think of the unlearning procedure as the addition of an “erase”
command to complement the typical “load” and “store” functions already
present. In the case of n-Back, for example, patterns more than n steps back
in the sequence are no longer needed. Unlearning these patterns reduces the
interference they cause, making it easier to recall more recent stimuli. While
this model was able to perform n-Back tasks without needing to unlearn
these older stimuli, initial experiments indicated that unlearning significantly
increased performance due to reduced interference.

4.3. Model Operation

Each run of the model is divided into two phases: Controller Initialization
and Task Execution. In the Controller Initialization phase, the control module
learns the instruction sequences necessary to perform the task using one-shot
Hebbian learning. This is so the ISM contains the appropriate pairings of
conditions and responses when the task is begun. This training of the control
module occurs only once, and after the Task Execution phase begins its
weights remain unchanged. The working memory layer, in contrast, begins in
a blank, untrained state, and has its weights updated multiple times as the
trial progresses through the Task Execution phase. While the associations
being learned in the control module are determined by the human modeler,
the learning that the working memory engages in during the task is entirely
guided by the model itself, with the model determining when to add or remove
a pattern from working memory.

During each step of processing in the Task Execution phase the model
goes through the following operations, directed by the control module. If the
model activated either output node in the previous time step, a new stimulus
will be presented, otherwise the inputs from the previous step are retained.
Next, the state of the working memory is updated. Then the output of the
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compare module is updated to reflect the new state of working memory and
the potentially new state of the visual input layer. Following this the state of
the context module is updated.

Next, the control module’s encoder is updated if the Encoder Update gate,
which regulates it, is open. If it is not open, the encoder input will be the
same as the previous time step, and thus the downstream layers in the control
module will receive the same inputs as the previous time step. This prevents
the control module from starting recall of a new sequence of actions before
the previous sequence has concluded. (Each action is one of the elements in
the sequences stored in the control module, and corresponds to one particular
operation necessary to carry out the task, as explained below.) This occurs
because the Encoder Update gate is opened only at the end of a sequence,
setting the stage for the next sequence to begin at the following time step.
The encoder’s output, whether it is the result of new inputs from an open
gate or not, is then used as input for the ISM. Once the ISM is updated the
decoder selects an action and outputs the gate control signals which compose
that action. These newly produced gate control signals are used to update
the gating values according to Eq. 1. If either the learning or unlearning gates
are open, then weight updates of the working memory layer occur. If the
Output gate is open then either output node may be activated, depending on
the state of the compare module. If either is activated then a new stimulus
will be presented in the following time step, proximately corresponding to a
self-paced stimulus presentation.

4.4. Controller Functionality

The Controller Initialization phase occurs before the model is presented
with any inputs or produces any outputs. For the n-Back model, the network
learns to perform the task for n ∈ {1, 2, 3, 4, 5}. The model is always trained
to do all five versions, so training is identical no matter which versions the
model will ultimately perform during the Task Execution phase, when the
n-input layer specifies which of the five different versions the model will
perform. This makes the model capable of switching between versions of
n-Back during trials, as dictated solely by its inputs and without any other
adjustments being made.

For the n-Back task, during the Controller Initialization phase the control
module learns six instruction sequences (Table 1; WM = working memory).
One of these six sequences adds a new stimulus to working memory when it
is executed. The other five each correspond to one of the five possible values
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Table 1. Instruction sequences learned by the control module’s ISM.

Sequence Action

add stimulus
to memory

1. open memory input gate, strongly biasing memory state
towards input

2. train the working memory layer; switch to finish context

current stimulus
matches 1-back?

3. open output gate; switch to start context; unlearn work-
ing memory

current stimulus 4. delay (i.e., update the state of WM, but nothing else)

matches 2-back? 3. open output gate; switch to start context; unlearn WM

current stimulus 5. delay

matches 3-back? 4. delay

3. open output gate; switch to start context; unlearn WM

current stimulus 6. delay

matches 4-back? 5. delay

4. delay

3. open output gate; switch to start context; unlearn WM

current stimulus 7. delay

matches 5-back? 6. delay

5. delay

4. delay

3. open output gate; switch to start context; unlearn WM

of n. Each of these five sequences steps back through the working memory’s
record of the recent visual stimuli the appropriate number of items and then
evaluates whether the current stimulus matches the one recalled. Which of the
six instruction sequences is executed is determined by the control module’s
inputs, which come from the context module and the n-input layer. (See
Appendix Sect. A.2 for further information.)

To illustrate how the trained control module works during the Task
Execution phase on a concrete sequence of inputs, consider a sequence of
stimuli ASDFG, with A being the first stimulus and G the last. Figure 3
illustrates the step-by-step actions that occur in processing the single input
pattern G, where the n-input value is 3. The goal is for the model to generate
the correct no match output since G does not match the 3-back stimulus S.
In order to evaluate if G matches the 3-back stimulus (which in this case is
S), The model must first add G to its working memory and then recover the
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3-back stimulus from its record. This requires stepping backwards through
the sequence it has learned, from G to F to D and finally to S.

In Figure 3(a) a new stimulus G is presented for time step t, n-input is set
to 3, and the Encoder Update gate is open as indicated by the shaded label in
the illustration. Recall that an open gate allows the flow of activation in the
same way that an open valve in a pipe allows the flow of fluid. Because n=3,
the controller determines that it must execute the first instruction sequence
in Table 1 (“add stimulus to working memory”). The working memory state
is depicted as A because that is three stimuli before the stimulus which was
just processed (F). By the end of time step t (Figure 3(b)), the effects of
action 1 can be seen: the Encoder Update gate has been closed to allow
sequence 1 to finish executing, and the working memory state has become
the same as the visual input because the Memory Input gate is open. At
the end of t + 1 (Figure 3(c)), the Memory Training gate has been opened,
updating the working memory weights, the Context gate has been closed,
changing the context to finish, and the Encoder Update gate has been opened
to allow a new sequence to be selected in the next time step. At the end of
t + 2 (Figure 3(d)), a new instruction sequence has been selected (“does the
current stimulus match the one from three back?”). The Memory Input gate
is closed, allowing the working memory to recall the previous item in memory.
The Encoder Update gate is closed again to allow the instruction sequence to
complete. In Figure 3(e) the gates remain unchanged as the working memory
recalls the preceding item again. In Figure 3(f) the working memory steps
back a third item in memory. The Output gates are opened, allowing the
compare module to activate the no-match node since the input pattern G
fails to match the working memory state S, generating the correct output
for this stimulus. The Memory Unlearning gate is opened to forget S now
that it is no longer relevant to the task. The Context, Memory Input and
Encoder Update gates are switched to ready the model for a new stimulus in
the following time step. Other values of n would lead to similar behavior, only
with a different number of delaying steps until the match step in Figure 3(f)
is done.

5. Results

After the GALIS n-Back model was trained to perform n-Back tasks of
varying lengths (n=1 through n=5), it was given sequences of 30 +n stimuli.
The first n are “preparatory stimuli,” and the response to these is ignored.
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Figure 3. Step-by-step operation of the n-Back model to process one input
stimulus G. (See text for details.)
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This is done for two reasons: primarily, because this is the way human subjects
are evaluated, and secondarily, because the first stimuli present a boundary
case to the model for which it was not given special behaviors to handle,
namely, attempting to recall a sequence which is longer than the one it has
stored. For each trial, ten stimuli would be generated, and the sequence
of inputs would then be drawn from these ten. A subset of all possible
stimuli was used because trials with human subjects often use limited sets
of stimuli such as the digits 0–9 (Schoofs et al., 2008) or eight rotational
positions around a circle (Hockey & Geffen, 2004). Of the stimuli following
the preparatory period, one third were randomly selected to be matches. The
following is a sample sequence used for the 3-back version of the task with
matching stimuli emphasized.

ADJAEFDKJCKAHFAHGDFGDKACKHCAGJAGK

A is the first stimulus in the sequence and K is the last. Each sequence was
generated without any “lures” (matching stimuli which are one position off
from the target location, for instance a match four positions back when doing
a 3-back task). Lures were excluded for two reasons. The first is that the
human data we were attempting to match (Watter et al. (2001)) did not use
lures. The second is that we wished to remove one potentially confounding
factor in order to concentrate on investigating the control module’s basic
ability to govern the model.

In Figure 4, the model’s performance is given, and is also compared to
that of human subjects, on 1-, 2- and 3-back tasks. Human data is taken
from Watter et al. (2001), which is typical of human results reported in the
literature. The model results are the average accuracy across all 30 stimuli
in 250 random sequences. The error bars in Figure 4 represent the standard
error of the mean. Two different variations of the model were tested. Model V
used variable working memory decay rates (the larger n was, the smaller the
decay rate used, so that for larger n values the working memory attempted
to store more stimuli), while Model C used the same decay rate for all values
of n.2

2Specifically, in terms of the parameters given in the Appendix, Model V used kWM =
.350, .300, .225, .150, .075 for n = 1 through n = 5, respectively, while Model C used
kWM = .2625 for all versions. These values were chosen via iterative deepening depth-first
search. In both models kISM = −0.3 for all versions of the task.
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Figure 4. Accuracy for human subjects and the computational model for
all five versions of n-Back. Human results were not reported for n=4 and
n=5. Error bars represent the standard error of the mean. Model V used
different working memory decay rates (kWM) for each n, while Model C did
not vary decay.

Both models show that, as n increased from n = 1 to n = 5, response
accuracy decreased monotonically. For n=1, 2, 3 both models’ results are not
significantly different than human performance at the level of p = .05; however
the overall fit for Model V was closer. This is possible because different decay
rates are most suitable for recalling sequences of different lengths (Reggia
et al., 2009; Sylvester et al., 2010). A lower decay rate in the working memory
layer allows longer sequences of visual stimuli to be successfully stored without
deteriorating away. A higher decay rate removes older items from memory,
reducing interference and improving the ability to recall shorter sequences.
This accords with previous investigations into the role of decay on attractor
net working memories, where it has been hypothesized that humans may
adjust a working memory decay rate in order to control the length of sequences
they are attempting to remember (Altmann & Gray, 2002; Winder et al.,
2009). The additional degree of freedom in Model V may account for it’s
improved fit compared to Model C. However, it should be noted that this
freedom is not necessary for Model C to produce a statistically significant
match with human performance.

Figure 4 does not show human results for n = 4 and n = 5 because
they are not reported in Watter et al. (2001). This is common, as human
subjects typically find them to be extremely challenging (Owen et al., 2005).
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Nonetheless, the GALIS n-Back model is trained to perform 4- and 5-back,
and the simulation results are shown as model predictions. If humans really
can adjust working memory decay to adapt to longer sequences, Model V’s
performance leads us to predict that subjects taking Watter et al.’s version
of n-Back for n=4 and n=5 would see their performance drop off linearly
to approximately 76.3% and 70.7%, respectively. Higher values of kWM have
more of an impact on larger values of n, since decay is compounded. Keeping
kWM = .2625 in Model C therefore disproportionally impacts performance for
n= 4, 5, reducing Model C’s accuracy on 5-back to no better than chance.
(Since one third of stimuli are matches, a strategy of random guessing would
result in an expected accuracy of 66.6%.) If humans cannot adjust working
memory decay to suit the task then we would predict that their accuracy on
Watter et al.’s version of 4-back to fall to 72.7%, and for human subjects to
be unable to perform 5-back at better than random accuracy. Both Model
V’s and C’s errors in these more demanding versions of n-Back appear to
be caused by the difficulty of recalling sequences of this length from the
working memory layer, rather than from improper retrieval of the instruction
sequences from the ISM.

The GALIS n-Back model exhibits a response time which is approximately
linear in the value of n. When a new stimulus is presented the model requires
two time steps to execute actions 1 and 2 in Table 1, and n additional time
steps for memory retrieval. Watter et al. (2001) also reports the participants’
average response times following each stimulus on 1-, 2- and 3-back tasks,
which is also roughly linear in n. This is compared to the average number
of time steps needed by the GALIS n-Back model in Figure 5. The GALIS
n-Back model’s response time correlates well with the human response time
data, with R2 = 0.9888. These results are relatively robust to variations in
kWM and kISM.

To demonstrate that our n-Back model is capable of switching between
versions of n-Back without relearning any of the instructions, experiments
were run in which the value presented to the n-input layer changed mid-
trial. Input sequences were constructed in the same way as described at the
beginning of this section, with one third matches, no lures, and a preamble of
preparatory inputs. For the first fifteen stimuli following the preamble, the
n-input layer was given an input of n1. Beginning with the sixteenth stimulus,
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Figure 5. Correlation between human response time per stimulus and the
average number of steps the model takes per stimulus. The trend line is
defined by y = 0.011x− 2.042, with R2 = 0.9888.

the value of the n-input layer was set to n2 6= n1.
3 No parameters were

adjusted or weight matrices were externally modified between the first and
second phases of each trial; the only difference was the value of the n-input
layer.

Figure 6 shows some representative results when mid-trial changes in n
occur. Each graph shows the accuracy at each position in the input sequence,
averaged over 1000 trials. Prior to changing the value of n, the model performs
as expected: at the average accuracy for n1. After the switch the model’s
accuracy is indistinguishable from trials in which the model was run at n2

for the entire trial (call this the baseline n2 accuracy). Thus there is no long-
lasting performance penalty associated with having had to switch versions of
the task. However, although the transition between values of n is quick, it
is not perfect. Whenever n is decreased, there is a brief transitional period
in which performance is below, but monotonically rises to, the baseline n2

accuracy. This gradual increase in accuracy occurs because some patterns
added to working memory are never unlearned during the transition period,
resulting in increased interference. The only exception to this pattern is
whenever transitioning to n2 =1, in which case the model’s accuracy jumps
to the baseline n2 accuracy level as soon as the new value of n is input. We

3For all trials in these experiments, kISM = −.3 and kWM = .225. (See Appendix.)
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Figure 6. Accuracy when changing the value of n during a trial. The horizontal
axis is the serial position within each sequence (following the preparatory period),
and the vertical axis is the average accuracy of responses to that stimulus across all
trials. Values of n were switched beginning with the 16th stimulus. [Top] Switching
from n1 = 1 to n2 = 3 (dark crosses) and vice-versa (light circles). The average
accuracy for the n=1 and n=3 conditions are shown as dotted and dashed lines,
respectively. [Middle] Switching between n= 2 and n= 4. [Bottom] Switching
between n=3 and n=4.
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believe this is possible because the attractor for the 1-back stimulus is strong
enough, having been decayed only once, to overcome any problems introduced
by insufficient unlearning of other stimuli. In contrast, and unexpectedly,
when n is increased there is a sharp drop in accuracy below the baseline n2

accuracy. This occurs because when n2>n1 some patterns which are needed
have already been unlearned. This premature unlearning problem is only
temporary, however, as the patterns which experience too much unlearning
decay as more stimuli are added to working memory. After several stimuli
the model is behaving as if it was never forced to switch between versions of
the task.

In summary, the GALIS n-Back model makes several testable predictions
about the average accuracy following a mid-trail change from n1 to n2. First,
after a brief transition period the accuracy is always the same as the baseline
n2 accuracy. Second, if n2 < n1, there will be a rapid monotonic rise in
accuracy to the n2 baseline value. Third, if n2 > n1, there will be a sudden,
sharp deterioration in accuracy below n2’s baseline value, followed by a rapid
monotonic rise to n2’s baseline value. To our knowledge, data does not yet
exist that can support or refute these predictions.

In order to investigate the sources of model errors, 100 runs of Model C
were executed for n ∈ {1, 2, 3, 4} according to the same procedures outlined
at the beginning of this section. The n=5 case was not evaluated because
it was already performing no better than chance, as explained earlier. For
each time step, the action chosen by the control module was recorded. This
was compared to the correct responses; for instance, for n = 3, actions 1,
2, 5, 4, 3 (action numbers are listed in Table 1) should occur in that order
for each stimulus. We then computed the Levenshtein distance4 between
the actual and ideal responses (Navarro, 2001). A value of zero indicates a
perfect match, meaning the control module never selected an incorrect action
during that trial. The errors made by runs with non-zero distances can be
attributed to failures of the control module. Errors made during a run with
zero Levenshtein distance (no controller errors) were generally due to a failure
of the working memory, such as a recalled pattern which is too noisy to be

4Levenshtein distance is a measure of string distance in which the two strings do not
need to be the same length. It is a count of the number of symbols which must be added,
removed or modified to produce one string from the other, and thus is a natural fit for this
situation as we are interested in the number of actions which are missing, duplicated or
erroneous.
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properly identified, or a failure to advance to the previously trained item.
(It is possible that the working memory could correctly recall a pattern and
the compare module fails to correctly judge it, but testing the components
individually revealed that this was hardly ever the case.) Both control and
working memory errors are due to incorrect associations in the respective
Hopfield networks, and can be linked to Hopfield nets’ limited capacity and
stochastic recall process (Ma, 1999; McEliece et al., 1987). It is possible that
these errors could be reduced by employing different learning rules which have
been shown to increase the capacity of Hopfield nets (Storkey, 1997; Storkey
& Valabregue, 1999).

The proportion of runs having control errors can be seen in Fig. 7(a). As
n increases so does the prevalence of control errors, since the length of the
instruction sequence required is greater. The overall accuracy for all trials
is compared to the accuracy only for those networks which made no control
errors in Fig. 7(b). The proportion of responses which were incorrect as a
result of malfunctions in the control module, working memory module, or
both is shown in Fig. 7(c). Even though more errors can be made by the
control module as n increases, the number of errors made by the working
memory increases even faster. As a result, a larger proportion of errors can
be attributed to mistakes in the working memory at higher n. Increasing
error rates at higher values of n are to be expected since errors in both the
control module and working memory can occur at any step during processing
and higher values of n necessarily include more processing steps, allowing
more errors to accumulate.

Runs in which the control module made errors can be subdivided into
two groups: those making “pathological” and “non-pathological” errors. The
pathological set were those that completely failed to output a particular
action for the entire trial, for instance, a network which throughout was never
able to enter the attractor state corresponding to action 4. These networks
produced Levenshtein distances over 50. The non-pathological networks were
those that made occasional errors, but were able to respond perfectly to a
majority of stimuli. These networks tended to produce Levenshtein distances
between one and ten.

We believe these pathological conditions are caused either because the
attractor basin associated with the un-recalled action is either too small
or too close in state-space to another basin. Either of these situations can
occur simply as a result of having randomly chosen the bit patterns for the
internal representation of that action. This could be resolved by selecting
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Figure 7. (a) The proportion of runs in which the control module made
one or more errors for n ∈ {1, 2, 3, 4}. (b) The accuracy of model outputs
for all runs (darker bars), and for those runs where no control errors were
made (lighter bars). (c) The proportion of model responses which were
incorrect due to malfunctions in the working memory, controller, or both.

semi-orthogonal patterns to represent each action, or ensuring there is a
minimum Hamming distance between internal representations.

6. Discussion

6.1. Testing the GALIS Hypothesis

The work described here with the n-Back task demonstrates for the first
time that the GALIS framework is capable of supporting executive functioning
more typically associated with symbolic AI systems. This executive behavior
allows GALIS-built models to exercise control over their own working memory.
This control is a function not only of the structure of the network, as is usually
the case, but also of the activity patterns learned by the instruction memory
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that make it possible to “program” a network to a novel extent. For example,
after an initial training phase is complete, the GALIS n-Back model performs
n-Back tasks for varying values of n without any direction from the user about
how or when to modify its memory, activate outputs, etc. This independence
is maintained even when the model switches between different versions of
n-Back dynamically within trials. This was made possible by using attractor
networks with asymmetric learning that control the sequential opening and
closing of gated connections between model components. It was not necessary
to rely on symbolic production rule-based systems, complex models of spiking
neurons, locally encoded information, or biologically implausible learning
rules. Parameters did not need to be re-tuned in order to match human
performance on 1-, 2- and 3-back versions of the task, although adjusting the
working memory decay rate did lead to a better fit. There is also a theoretical
argument for why lesser amounts of decay are desirable for larger values of
n, namely, people may implicitly adjust decay in an attempt to change the
size of their memory buffer (Altmann & Gray, 2002; Weems et al., 2009).
The number of time steps the model takes for each stimulus is also highly
correlated with the response times of human subjects. No modifications of
any kind were necessary to capture this relationship in response times.

Importantly, testable predictions were made regarding 4- and 5-back as
well as for intra-sequence changes to n. Although human participants find 4-
and 5-back difficult, some studies test such lengths under certain conditions,
and research is ongoing on training regimes which may allow humans to
perform at such levels with practice (Harbison et al., 2011; Jaeggi et al., 2010).
The method presented here for modeling n-Back could be falsified if human
subjects failed to produce the observed patterns in accuracy changes when
switching values of n within trials. We are not aware of any studies in which
human subjects have been required to change n midstream, as opposed to
between trials or blocks of trials, but if such studies were carried out we would
expect to see the patterns evident in Figure 6.

One key point is that an important part of the behavior of the GALIS
n-Back model, the value of n, is encoded in the contents of its adaptive
instruction memory rather than the model architecture or in hand-coded
connections. No changes to the model were required to perform five different
versions of n-Back; changing the inputs to the model is sufficient to effect
different behavior in the model. Additionally, there are only a few major
architectural differences between this model and a previously implemented
model of a much simpler task (Sylvester et al., 2011). These consist primarily
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of adjusting output — and to a lesser degree, input — systems to accord with
the particular requirements of the task (e.g., two rather than three output
nodes) and introducing one new component, the context module. This new
component will be generally useful for a variety of tasks, not only n-Back,
since it acts much like a very simple Program Counter in a CPU. In addition
to the context module, the compare module present in both this and our prior
work is also a dedicated piece of architecture, hand-designed by the modelers.
This does decrease the generality of the model, but we would note that this
component is one which is also useful in a large variety of situations, and so
while it is specifically tailored to one purpose, this purpose will generally be
useful for a spectrum of future tasks.

6.2. GALIS as a general purpose framework

The behavior-as-software approach used in the GALIS framework is a
novel approach among neural network models. In a sense, the ability to store
temporal sequences of “instructions” in a control module and gate the activity
throughout model regions based on these instructions gives GALIS models the
ability to act in a “computer-like” fashion. Further, we predict that changing
the information learned by the control module will enable GALIS models to
be adapted to other widely used serial recall tasks such as Running Memory
Span or Block Span. In other words, we believe that building models of other
similar tasks will require mostly changes to the neural software and only
minimal changes to the neural hardware. To test this claim, work is currently
ongoing to expand GALIS from multiple versions of n-Back to different serial
memory and continuous performance tasks. Tasks currently being investigated
include the AX-CPT and 1-2 AX-CPT variant (Carter et al., 1998; O’Reilly
& Frank, 2006) as well as the Wisconsin Card Sort Test (Rougier et al., 2005)
and the Wisconsin Delayed-Match-to-Sample task (Stemme et al., 2007).

The use of both attractor networks and gating help to overcome one of
the primary challenges of working memory: the need to balance stability with
plasticity (Goldman-Rakic, 1987). Each pattern stored in both the working
memory layer and the attractor networks of the controller gains stability from
being represented as the minimum of an attractor basin. However, the states
of these networks can still be rapidly updated by introducing biasing inputs
from external sources or adjusting nodes’ thresholds. Similarly, gating can
be used both to stabilize a network by, for instance, closing off its external
inputs, or to rapidly destabilize a network by allowing inputs or triggering
weight updates (O’Reilly et al., 2002). This is reminiscent of the D1 and
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D2 forms of attractor dynamics present in the prefrontal cortex (Durstewitz
& Seamans, 2008). Attractors dominated by D1-type dynamics have deep
basins, aiding robustness of working memory but increasing preseveration,
while those dominated by D2 dynamics have shallow attractors, allowing fast
switching and high flexibility, but making maintenance more difficult. Differing
activation of the relevant dopaminergic systems can shift the attractor systems
between modes, similar to the way that opening and closing gates governing
biasing inputs can reform the attractor networks in GALIS.

Attractor networks with gating strike a balance between the continuous
nature of typical neural networks and the discrete nature of symbolic systems,
potentially narrowing the gap between what is possible with systems of each
paradigm. While GALIS attractor networks operate in high-dimensional,
continuous space, each attractor within that space can be seen as a discrete
“object” (Simen & Polk, 2009). This is reminiscent of the way resonant
states in ART networks balance characteristics of distributed and discrete
representations (Carpenter & Grossberg, 2003; Grossberg, 2000), which leads
us to consider the potential usefulness of adapting some of ART’s learning
methods to improve GALIS’s attractor networks in the future. We believe
this dual nature of attractor networks presents an underexplored opportunity
to produce symbolic-like behaviors using sub-symbolic systems without losing
desirable functionality of the sub-symbolic paradigm, such as easy partial
pattern matching.

Sequential attractor nets also help to avoid many scaling problems. Be-
cause the attractors are sequential rather than fixed points, multiple items
can be active “simultaneously” in the same layer (Winder et al., 2009). In
fact, the structure of the instruction memory allows multiple sets of multiple
items to be activated. This obviates the need to dedicate a network to each
possible action by allowing them to be effectively superimposed on a single
layer.

Of course, the GALIS framework currently has some limitations, and
will evolve in its details as we explore its use for additional tasks. These
limitations include requiring learned instruction sequences to be determined
by the modeler. Despite this issue, we think the current system of basing
behavior on stored patterns in memory is a valuable stepping-stone towards
more autonomous systems. If behavior can be stored in memory then it
can be more easily modified than if it was built into the architecture. And
if it can be modified, we believe it can be generated autonomously during
learning. In other words, GALIS moves away from systems whose behavior is
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a function of their construction and towards ones whose behavior is based on
instruction, with the eventual aim of not needing to provide those instructions
explicitly. We are optimistic that the instruction patterns of the ISM can
be modified online by the model because the instruction memory operates
by the same paradigm as the working memory layer, which we have shown
can be modified by the model online. Future work needs to allow GALIS to
modify instruction sequences during task performance, improving as it gains
experience, and generate instruction sequences from the ground up. This
would enable GALIS models to proactively adjust their own behavior during
trials rather than carrying out a predetermined sequence of reactions to the
environment.

A second shortcoming of the current GALIS approach to storing instruc-
tions is the inability of temporally asymmetric attractor nets to store sequences
in which the same item is repeated a given number of times without resorting
to storing multiple tokens each representing the same type. There is a diverse
assortment of attractor net methods for storing sequences (e.g., Farrell &
Lewandowsky, 2002; Koene & Hasselmo, 2007) which we are exploring to
resolve this issue, in addition to looking into other neural approaches to serial
memory (e.g., Botvinick & Plaut, 2006; Kremer, 2001; Monner & Reggia,
2012).

Further, the experiments described here were performed without lure
stimuli, which are a heavily studied aspect of n-Back performance. Our goal
with the present paper was not to provide an exhaustive elucidation of how
humans solve n-Back, but simply to offer demonstration that the techniques
of GALIS are valuable for solving the same sorts of problems as humans
do. Having done so, we now plan a more thorough study of how the GALIS
n-Back model compares to humans, including on performance on lure trials,
the affects of training, and other aspects of n-Back in the near future.

Finally, while GALIS is not intended as an accurate model of the brain, it
is loosely inspired by the organization of cerebral cortex, especially frontal
regions. For example, the control module’s rule-like behavioral sequencing
captures roles believed to be played by lateral prefrontal cortex (Bunge, 2004;
Tanji et al., 2007), and the compare module’s pattern matching activities can
be related to the performance and detection of incongruent stimuli functions
of the anterior cingulate cortex (Brown & Braver, 2005; MacDonald et al.,
2000). An important direction for future research will be to further bring
GALIS into alignment with known neuroscientific data.
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Appendix. Model Details

A.1. Working Memory

The working memory layer is based on the temporally asymmetric attractor
approach developed in Sylvester et al. (2010). It uses two weight matrices to store
items in the sequence as well as their order. The first weight matrix, WWM, is
trained with standard one-shot Hebbian learning with the addition of a weight
decay term so that older memories are supplanted by more recent ones:

wij(t) = (1− kWM)wij(t−1) +
1

N
ai(t) aj(t) (1− δij) (A.1)

Here kWM is the decay rate (0 ≤ kWM < 1) and δij is Kronecker’s delta, which
ensures that weights on self-connections are fixed at zero. The second weight
matrix, VWM, also uses Hebbian learning but associates the state of a node not
with the current states of other nodes, but with the other nodes’ previous states.
This introduces a sense of temporal ordering to VWM, making it possible to recall
the stimuli in order rather than randomly. The learning rule is given by

vij(t) = (1− kWM) vij(t−1) +
1

N
ai(t) aj(t−1) (A.2)

The decay term is still present, although the Kronecker’s delta factor is not as it is
desirable for a node’s activity to be influenced by its own previous state. Updating
the state of the working memory layer occurs in two stages, the first governed by
the asymmetric weights, and the second by the symmetric weights. When both
WWM and VWM are used simultaneously they can work at cross purposes. VWM is
pushing the network towards the next attractor, while WWM is fighting to keep it in
the same attractor basin. The two-stage process adopted here helps the network to
proceed from one state to the next in a more orderly and predictable progression.

Activation updating begins by first calculating the input hi(t) to each node i
using VWM and the previous network state along with a gated connection from the
topologically corresponding node in the input layer. Using only VWM to update
the network serves to move the network state from the current attractor basin to
the basin associated with the next pattern in the sequence:

hi(t) =
∑
j

vij aj(t−1)− θi(t) + 2 gin(t) ini(t) (A.3)
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where vij is the strength of the temporally asymmetric connection from node j to
node i both in the memory layer, aj is the state of node j in the memory layer,
gin is the value of the gating node mediating the input-to-memory connections,
ini is the state of node i in the visual input layer, and θi is a dynamic threshold
that is used to keep the network from settling permanently into any one attractor
basin. If a node’s state has not changed in the previous time step, the magnitude
of θi increases, which means node i will require inputs with larger magnitudes to
remain in the same state. Specifically, at every time step, θi decays according
to θi(t + 1) = (1 − kθ) θi(t) and in any time step in which the state of node i is
unchanged from the previous time step a factor of kw ai(t) is also added to θi(t+ 1).
Here kθ = .02 and kw = 0.0125. The input hi is then used to update the state of
each node according to Eq. A.4.

ai(t) =


+1 hi(t−1) > 0

ai(t−1) hi(t−1) = 0

−1 hi(t−1) < 0

(A.4)

The hi(t)=0 case is used to prevent the nodes from being biased towards either
turning on or off when their inputs are perfectly balanced. (This situation is
extremely rare.)

After updating both ~a and ~θ, the updating process begins again, this time using
WWM and the current network state to calculate the input fi(t) according to the
following rule:

fi(t) =
∑
j

wij aj(t)− θi(t) + 2 gin(t) ini(t) (A.5)

This helps the network to settle further into the new attractor basin it was pushed
towards by VWM in the previous stage. The asymmetric weights suffice to get the
network into the next attractor basin; the symmetric weights impel it into the
bottom of that basin, reducing the noisiness of the recall. This new input fi(t) is
then used to update ~a according to Equation A.4 again (though the conditionals
are predicated on fi, not hi, this time), and ~θ is updated once again.

The working memory module’s unlearning is defined by the following anti-
Hebbian rules:

wij(t) = wij(t−1)− 1

2n−1
· 1

N
ai(t) aj(t) (1− δij) (A.6)

vij(t) = vij(t−1)− 1

2n−1
· 1

N
ai(t) sgn

(
N∑
l=1

vljal(t)

)
(A.7)
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Here N is the number of nodes, while n is the same as the lag n in n-Back.
The aj(t−1) term in Eq. A.2 has been replaced in Eq. A.7 by the summation
because the goal is not to disassociate the current state of the memory from the
state immediately preceding it, but from the pattern which was trained preceding
the current one. Because VWM is trained to make the memory move toward the
previously trained pattern, we can use it to approximate the pattern trained prior to
the current state. The factor of 1/2n−1 is used so that unlearning is more aggressive
when shorter sequences need to be retained.

A.2. Controller Operation

In the Task Execution phase, processing each visual stimulus occurs in two
stages. The objective of the first stage is to add the new stimulus to working
memory. This situation is indicated by the context module outputting the start
pattern. If the context module is outputting start, then sequence 1 in Table 1
will be executed, regardless of the value of the n-input layer. Adding a new item
to working memory is accomplished through two actions (numbers 1 & 2 in the
Table). The first action opens the Memory Input gate, so that the state of the
working memory will be biased towards the current visual stimulus. The second
action updates the weights WWM and VWM to add the current state to working
memory, and switches the context module to the finish mode so that when the
control module updates in the next time step it knows that the working memory
has already been trained.

The objective of the second stage in processing a visual stimulus is to evaluate
whether that stimulus matches the one presented n steps ago. This requires stepping
back through the working memory’s record of events, which is accomplished by
allowing the working memory’s dynamics to run n times. Due to the effect of
the temporally asymmetric weights, the state of the network should shift to the
previously trained item each time it updates. The sequence to carry this out is
selected based on the value of the n-input layer as well as the context module
outputting the finish pattern. For clarity, we describe how this works in detail only
for 3-back since extrapolation to the other versions of the task is straightforward.

Checking whether the current stimulus matches the stimulus three items ago
requires three actions (numbers 5, 4 & 3 in Table 1) executed consecutively. The
first two actions each delay the controller for a time step, which gives the working
memory the opportunity to update its state twice. During each of these updates the
asymmetric weights should move the network to the previously trained stimuli. The
third action does three things: open the Output gate so the comparison between
the current memory state and visual input can be output, unlearn the current state
of the working memory since it is no longer relevant to the task, and switch the
context module back to start so that in the next time step the controller will know
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that processing the current stimulus is complete and it is time to begin the first
phase of processing the next stimulus.

(There are multiple delay actions with identical effects listed in Table 1 because
the ISM cannot be trained to repeat the same pattern a set number of times, such
as a sequence like α, α, α, δ. It can, however, learn α, β, γ, δ. By defining β and γ
to cause the same controller outputs as α— that is, if you define them to be three
different tokens all of the same type — you can reproduce the effects of training the
sequence α, α, α, δ. The four different actions labeled “delay” all have the same
effect, but each is represented as a distinct bipolar pattern. Using this type/token
distinction, the number of total time steps the working memory delays can be
controlled by using a different number of these delay tokens in the instruction
sequence for each value of n.)

A.3. Controller Architecture

A diagram of the control module’s internal structure can be seen in Figure A.8.
It is composed of three subcomponents. The principal of these is the instruction
sequence memory (ISM) which learns the actions needed to respond to each
circumstance. The other two components are the encoder and decoder, which are
used for pre- and post-processing to convert the inputs of the controller into the
patterns stored in the instruction sequence memory, and then from those patterns
into the gating control signals the control module outputs.

A.3.1. Instruction Sequence Memory
The instruction sequence memory is a discrete autoassociative memory that

uses temporally asymmetric learning in addition to standard Hebbian learning to
process sequences (Sylvester et al., 2010). This allows it to store which actions
make up the response needed for the task, and also the order in which those actions
must be carried out. The ISM has one important difference from the working
memory layer, however: it has been modified to store multiple sequences at the
same time. This is accomplished by way of a conceptual division of the nodes
into two sets, the “cue” and “response” nodes. (The WM module could also be
augmented in this way, for instance to model a dual n-Back task (Jaeggi et al.,
2010), but it is not necessary for this model.)

The role of the cue nodes is to provide the necessary context information to the
network to select from among the stored instruction sequences. The state of the
cue nodes corresponds to the situation the model is facing. The response nodes
are responsible for storing the actual items in each sequence, and thus selecting
an action from those in the given instruction sequence. Each instruction sequence
and each action are represented internally by random bipolar strings. For n-Back
there are six different instruction sequences and seven actions, outlined in Table 1.
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Encoder Input (96)!

Encoder Hetero-associative (320)!

Encoder Auto-associative (320)!

n Input Layer (64)! Context Module (32)!

Action Selection (7)!

Decoder Output (6)!

Cue Nodes (320)! Response Nodes (192)!

Encoder!

Update!

Gates!

INSTRUCTION SEQUENCE MEMORY (512)!

Output to Gates!

Figure A.8. The control module. Thick arrows denote fully connected
layers, while thin arrows denote one-to-one connections. Following the name
of each layer is the number of nodes it contains in the example presented
in this paper. One-to-one connections from the Encoder Auto-associative
layer terminate on the cue nodes of the instruction sequence memory, while
full connections terminate on the response nodes.

Because an action can belong to more than one sequence there are a total of
seventeen patterns stored as attractors in the ISM (one for each row of Table 1).

Although the ISM is divided into cue and response groups, its nodes are fully
connected. The difference between the two types of nodes lies in their inputs
and outputs. Only the state of the response nodes are output to the decoder
and the cue and response nodes receive different inputs from the encoder. Cue
node i’s external input ei comes from one-to-one topographic connections from the
corresponding node in the encoder auto-associative memory. These connections
allow the cue pattern which has been chosen by the encoder to be passed on to the
cue nodes. Response nodes, on the other hand, are fully connected to all nodes
in the encoder auto-associative memory. The weights on these connections are
trained using one-shot Hebbian learning to associate each cue pattern with the
first response pattern in that sequence. The purpose of the connections between
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the encoder and response nodes is to bias the ISM towards the first pattern in
the sequence. This is only desirable when a new sequence is being selected, so the
gate on these connections is kept closed at all other times. This way the encoder
influences the response nodes only in time steps when the controller determines
that a new sequence is supposed to be selected, and is ignored otherwise.

The external input to ISM node i is defined by

ei =


aenci i ∈ {Cue}

gctrl
∑
k∈enc

uikaenck i ∈ {Response} (A.8)

where aencj is the state of node j in the encoder auto-associative memory, uik is
the connection strength from node k in the encoder auto-associative memory to
node i in the instruction sequence memory, and gctrl is the value of the Encoder
Update gate.

Like the working memory, the ISM also has two weight matrices, WISM and
VISM. The former is trained using standard Hebbian learning and the latter using
temporally asymmetric learning, defined by the following rules:

wij(τ) = (1− kISM)wij(τ−1) +
1

N
ai(τ) aj(τ) (1− δij) (A.9)

vij(τ) = (1− kISM) vij(τ−1) +
1

N
ai(τ−1) aj(τ) (A.10)

where τ is the training epoch. Here ~a is simply the concatenation of a cue and
response pattern which make up one of the seventeen distinct actions listed in
Table 1. Unlike kWM, kISM can be positive or negative. When negative, it acts as
a gain rather than decay. A positive value decreases the strength of earlier items
in a sequence. This is desirable when trying to reproduce serial position effects in
human memories of external stimuli, but there is no particular reason for earlier
items in the instruction sequence to be diminished. Negative values, which serve to
amplify earlier items, have surprisingly been found to be beneficial for the ISM.

Other than taking input from the encoder rather than the visual input layer,
the dynamics of the ISM are the same as those of the working memory. The same
two-part update process as the working memory layer (using first the asymmetric
and then the symmetric weights), although Eqs. A.3 and A.5 are redefined as
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follows to accommodate the differences in the external input, given in Eq. A.8.

hi(t) =
∑
j

vij aj(t−1)− θi(t) + ei(t) (A.11)

fi(t) =
∑
j

wij aj(t)− θi(t) + ei(t) (A.12)

Both the state ~a and dynamic threshold ~θ of the ISM are updated in the same way
as they are in the working memory.

A.3.2. Encoder
The encoder is responsible for selecting an instruction sequence to execute by

translating between the inputs to the control module and the cue portion of the
patterns stored in the ISM. Both the inputs to the encoder and the connections
between the encoder and the ISM response nodes are gated. They are opened as
part of the final action of a sequence, which allows the control module to ready
itself in the next time step to begin processing a new sequence of actions. When
the Encoder Input gate is open activity flows from the context module and n-input
layer to the encoder’s input layer. When this gate is closed the encoder does not
receive input so the state of its input layer remains unchanged from the previous
time step. This in turn means that the encoder’s output will be the same as the
previous time step, so the ISM will be operating on the same cue pattern as it
did in the previous time step. This is done to prevent the ISM from switching
to the next instruction sequence before the previous sequence in completed. The
encoder-to-response-node connections are mediated by the same gate value, since
they should should influence computation when a new sequence is being started
and be ignored otherwise.

The encoder is composed of three layers of bipolar nodes (Fig. A.8). This
architecture could possibly be made simpler, but only at the expense of more
complicated dynamics. There are 96 nodes in the first layer (one per input) and
they receive input from the output of the context module and the n-input layer.
The second and third layers have 320 nodes, one per cue node in the ISM. The
connections between the first and second layers are trained by one-shot Hebbian
learning, forming the two layers into a heteroassociative memory which can produce
the correct cue pattern when given the corresponding n-input vector and context
module output.

The third layer is a standard autoassociative Hopfield network which outputs
to the ISM. It has a full set of intralayer connections which have been trained
by one-shot Hebbian learning to recognize cue patterns. These connections serve
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to move the state further into the current activity basin, i.e., closer to the cue
pattern that the heteroassociative memory recalled. This mitigates errors resulting
from the first two layers. By training only on the cue patterns and not the control
module’s inputs or response patterns, this layer specializes in cue pattern memory,
and avoids interference which can arise in the preceding and following layers.

This autoassociative memory is carrying out a “redintegration” process, using
prior knowledge to help reconstruct a pattern from a partial copy (Baddeley,
2007). Many cognitive models require that a pattern retrieved from memory be
reconstructed in some way (Lewandowsky & Farrell, 2003), including clarion (Sun,
2006) and the “clean-up” memory of Eliasmith and colleagues (presented in (Stewart
et al., 2011) and used in (Choo & Eliasmith, 2010), among others). Attractor
networks have been used for this purpose before, including Lewandowsky (1999)
and Kesner et al. (2000).

A.3.3. Decoder
The decoder is responsible for translating the patterns represented in the ISM

response nodes into the signals used to drive gate activity. This is accomplished
through a competitive layer which serves to select a single response action and a set
of Hebbian-trained weights which learn to produce the desired gate outputs for each
action. It is composed of two layers (Fig. A.8). The first, called the action selection
layer, has seven binary nodes — as many as there are response patterns.5 It is
fully connected to the response nodes of the ISM. These connections are trained by
one-shot Hebbian learning to associate each response pattern with a single active
node in the action selection layer.

In order to help ensure that only one node will be active, the action selection
layer also has a set of recurrent connections which create competitive dynamics,
with every node reinforcing its own activation while inhibiting that of the other
nodes. Since the Hebbian weights from the response nodes to the action selection
layer have already produced an activity pattern which is close to having a single

5Using one node per action is a violation of our commitment to using distributed
representations. While we are exploring alternate arrangements for the future, there is
some basis for their use in this situation. Distributed systems using localized nodes for
action selection is relatively common (e.g., Amos (2000)). This is partially because it is an
effective and convenient arrangement, but also because action selection has been linked to
the basal ganglia (Gurney et al., 2001; Redgrave et al., 1999; Schroll et al., 2012), and the
basal ganglia have up to one thousand times as many inputs as outputs. This topology
suggests that information is being condensed or integrated in some way, which is what
occurs in the decoder. While we are not attempting to explicitly model the basal ganglia
here, we still do not wish to ignore the role the cortico-basalganglio-thalamic loops play in
action selection.
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winner, only a single step of these competitive dynamics is needed to make one
node maximally active and all other nodes off.

The action selection layer then feeds in to the control module’s output layer,
which generates the gate control signals. The weights on these connections also use
one-shot Hebbian learning to learn the desired gate control signals. For instance,
if action i necessitates fully opening the first gate, partially closing the second,
and leaving the others unchanged, action node i’s outgoing weights would be
(1,−0.25, 0, 0, 0, 0, 0).

A.4. Compare Module

The compare module is composed of two layers. The first is the same size as
the memory and visual input layers, and receives one-to-one connections from each
of those components. The state of nodes in this layer is the product of the states
of the corresponding nodes in the input and memory layers. The second layer has
two nodes, both of which take as input a value proportional to the inner product
of the input and memory layers’ states. One of the second layer nodes adopts a
state of one if its input is above a certain threshold — here equal to 0.9 — and zero
otherwise, while the other node outputs one if its input is below that threshold
and zero if it is above. These two nodes drive the model’s output nodes.

A.5. Context Module

Within the context module, two linear threshold units, one each for start and
finish, are each fully connected to a set of 32 nodes. The start node activates
when the Context gate’s state is less than one, the finish node when it is greater
than one. The weights on these connections are randomly selected binary patterns.
By raising or lowering the gate’s value above or below the threshold the control
module can select one of the two patterns for output. While the context module
may seem complex for its relatively simple function, we note that this is largely due
to the commitment to using a gating-based mechanism and the desire to maintain
modularity between the control and context functions.
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