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In many species, adjacent topographic maps in sensory neocortex are
found to be oriented as roughly mirror-image copies of one another. Here
we use a computational model to show for the first time that, in princi-
ple, adjacent cortical topographic maps that are mirror-image symmetric
along two dimensions can arise from activity-dependent changes if the
distribution radius of afferents sufficiently exceeds that of horizontal
intracortical interactions. We also find that infrequently, other types of
intermap symmetry and previously unexpected map relationships (such
as interlocking rotation, in which two adjacent maps become intertwined)
can occur. These results support the hypothesis that activity-dependent
synaptic changes play a more important role in forming the orientations
of adjacent cortical maps than is currently recognized.

1 Introduction

Mirror-symmetric topographic maps are common in the neocortices of
many species (Schulz & Reggia, 2005), but it remains unknown to what
extent such symmetries are due to genetic encoding versus thalamocortical
activity and synaptic plasticity. Multiple theories have been put forward, the
most widely accepted being that the initial partitioning of the cortex into dif-
ferent areas during development is primarily due to genetically determined
chemical markers (Levitt, 2000; Sur & Leamey, 2001; Zhou & Black, 2000).
However, the degree to which the subsequent reflection-symmetric orien-
tation of maps depends on afferent activity remains unclear (Cohen-Cory,
2002; Grove & Tomomi, 2003; Karbowski & Ermentrout, 2004). Many exper-
imental studies have demonstrated remarkable plasticity in cortical maps
due to altered probabilities of sensory stimuli, peripheral nerve lesions,
or cortical damage (Buonomano & Merzenich, 1998; Pantev et al., 1998;
Raineteau & Schwab, 2001). Recent modeling work established that such
mirror-symmetric maps can arise along a single dimension due to activity-
dependent synaptic changes, leading to linear sequences of pairwise
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mirror-symmetric maps, each having one or two neighbor maps (Schulz
& Reggia, 2005).

Here we extend this past computational study of the selective orientation
of multiple adjacent self-organizing maps along one dimension to the more
general situation where adjacencies occur in two dimensions. It is important
to establish this generalization because biological cortical surfaces are two-
dimensional, not one-dimensional. Further, the successful generalization to
two dimensions is not obvious a priori because it requires that numerous
constraints between adjacent pairs of individual maps be satisfied simulta-
neously over long distances in four directions. Global consistency and well-
formedness like this over even a single self-organizing map have been found
to be difficult to achieve due to the occurrence of topological defects that
arise during map formation (Aoki & Aoyagi, 2007). We show here for the
first time that, in principle, multiple adjacent and mirror-symmetric topo-
graphic maps can arise in two dimensions from activity-dependent synaptic
changes alone, assuming that the distribution radius of already established
cortical afferents sufficiently exceeds that of horizontal intracortical inter-
actions during map development (Brown, Keynes, & Lumsden, 2001). We
also find that other types of intermap symmetries can occur, although much
less frequently, as well as other unexpected types of map relationships, such
as interlocking rotations in which the maps become intertwined. These re-
sults support the hypothesis that activity-dependent synaptic changes play
a significant role in forming adjacent mirror-symmetric cortical maps and
raise the possibility that the other types of atypically oriented intermap re-
lationships that occasionally occur might contribute to disordered cortical
information processing in childhood neurodevelopmental disorders.

2 Methods

We adopted the same multiwinner self-organizing map architecture and
methodology used in the earlier study for maps occurring along one dimen-
sion (Schulz & Reggia, 2005), but now modified to permit maps to occur
along two dimensions. The output or cortical layer nodes over which map
formation occurs are arranged in a regular rectangular grid. The distance be-
tween two cortical nodes i and j at positions (ri , ci ) and (r j , c j ) is measured
with the box-distance metric, dlattice (i, j) = max(|ri − r j |, |ci − c j |). Concep-
tually each cortical node i has an afferent connection from each node in
the input layer. These connections have real-valued, nonnegative weights,
which are denoted wij for the connection from input node j to cortical node
i. Activation of both input and output nodes is between 0 and 1.

The activation level of the input nodes is given by an input pattern #x of
degree P, with #x ∈ [0, 1]P and ‖#x‖ = 1. Each input pattern represents the
stimulation of a point on a two-dimensional sensory surface. As in Schulz
and Reggia (2005), coordinate encoding of input patterns was used both to
maintain computational efficiency and permit unbiased comparisons with
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the earlier study. Such encoding is a simplification of biological reality but
has been shown in the past to be effective for topographic map forma-
tion. Training was done using 196 points, sampled uniformly from the unit
square in a 14 × 14 grid. These patterns were then normalized by projecting
them onto the unit sphere to avoid introducing biases due to unequal input
vector lengths, resulting in three-dimensional input and weight vectors.
Specifically, an input point from the unit square p = (px, py) is projected on
to q = ( px

a ,
py
a , b
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p2
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The input to each cortical node is given by hi = #wT
i #x, and multiple

winners are determined by a one-step selection process in which all nodes
that have a greater activation than their N closest neighbors are selected
as winners. Here N is the number of cortical nodes within a distance rcomp
from a node at the center of the lattice. For our computational experiments,
we used rcomp = 6, which gives each node N = 168 other nodes to compete
against. If cortical node i is determined to be a winner, it is taken to be the
peak of an island of activation. That is, node i is taken to be maximally
active (yi = 1), and the activations of its neighboring nodes are taken to
decrease exponentially according to their distance from i. Specifically, the
activation of an arbitrary node j will be yj = γ d(i, j), with γ ∈ (0, 1), and i
being closer to j than any other winning node.

Individual weights are initialized to uniform random values on [0, 1],
followed by a normalization of each node’s weight vector to unit length. In-
puts are presented in a randomized order each epoch, and Hebbian weight
updating occurs after each, according to #wi = #wi + µyi #x with a learning rate
µ ∈ (0, 1], followed by a normalization step #wi = #wi

‖ #wi ‖ to induce competi-
tion between weights. As is often done with self-organizing maps, learning
parameters are adjusted as the learning process progresses. Training begins
with larger values of γ and µ, and these values gradually decrease. We vary
our parameters according to γ (t) = γ f in + γinit−γ f in

1+e (t−γinf l )/γσ
where t is the propor-

tion of epochs elapsed, the initial value γinit = 0.9, the final value γ f in = 0.0,
γσ = 0.1 controls the rate of decrease, and the inflection point between the
coarse and fine stages of learning is γinf l = 0.33. The same function deter-
mines µ, using µinit = 0.5, µ f in = 0.0, µinf l = 0.5, and µσ = 0.1.

In assessment of map formation, common metrics are ill suited for situ-
ations like ours where multiple maps are present (Schulz & Reggia, 2005).
For this reason, as with the earlier study, we adopt the M metric, which
is defined as the mean of the smallest 2% of all pairwise dot products of
adjacent cortical node weight vectors. M is inversely proportional to the av-
erage distance between receptive field centers of adjacent cortical elements
in those regions where such distances are greatest. Because weight vectors
are normalized, 0 ≤ M ≤ 1, with larger values of M indicating better map
formation.

To visualize map formation, we imagine a spiral pattern to be super-
imposed on the 14 × 14 grid of input patterns (see Figure 1a). Each input
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Figure 1: (a) Spiral label pattern used for map formation visualizations, de-
picted over the sensory surface. (b) Initial cortical map of an untrained network
of size 35 × 35, which is highly disorganized due to random initial weights.
(c) The same network as in b, after training. Six maps have formed (three rows,
two columns) with mirror symmetry between every adjacent pair. (d) Schematic
of c, showing the orientations of each map and intermap relationships.

location is either represented by a black circle of a specific size (with smaller
circles in the middle of the region) or is left blank. The labeling of input
locations is for visualization purposes only and does not affect the acti-
vation dynamics or learning process used in map formation. Because the
spiral pattern is asymmetric, the relative orientation of any two adjacent
representations of it on the cortical surface can be unambiguously catego-
rized. When a map is visualized, each cortical node i is associated with the

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2009.04-08-763&iName=master.img-000.jpg&w=309&h=333
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Table 1: Number of Maps and Symmetries for Different Sized Networks.

Number of Maps Pairwise Symmetries

Size Mean Minimum Maximum Mirror Glide Rotate Interlock

15 × 15 1.00 1 1 — — — —
20 × 20 2.00 2 2 .000 .000 .000 1.000
25 × 25 2.00 2 2 .000 .000 .000 1.000
30 × 30 3.35 2 7 .672 .033 .164 .131
35 × 35 6.25 2 9 .737 .125 .125 .013
40 × 40 8.25 6 9 .834 .009 .152 .005
45 × 45 10.10 7 13 .811 .081 .105 .004
50 × 50 13.00 10 17 .826 .049 .118 .008
55 × 55 16.15 12 19 .883 .049 .068 .000
60 × 60 18.40 15 24 .840 .063 .092 .005
65 × 65 24.40 16 29 .848 .074 .079 .000
Overall (size ≥ 30 × 30) .806 .060 .113 .021

input pattern #xj , which maximizes its activation. Whatever label (circle or
blank) is associated with the input pattern j is placed on the map in the lo-
cation of node i. For well-formed topographical maps, the input spiral will
show up as a slightly distorted but topologically equivalent image on the
cortical surface. An example of map visualization before and after training
can be seen in Figures 1b and 1c. Figure 1d gives a schematic representation
of the six maps shown in Figure 1c. In this example, each individual map
of the input surface is a mirror image of each adjacent map.

3 Results

Computational experiments were done using 11 different output lattice
sizes, ranging from 15 × 15 to 65 × 65. Twenty runs lasting 2500 epochs
each, differing only in their initial random weights but otherwise equiva-
lent, were done for each network size. A typical result can be seen in Figure
1c, where six maps, each mirror-symmetric with its neighbors, formed dur-
ing learning. Informally these model maps correspond to adjacent maps
observed in various biological somatosensory cortices (reviewed in Schulz
& Reggia, 2005). Table 1 shows the average, minimum, and maximum
number of maps formed for each lattice size. In general, the larger the
network, the more maps that formed. Maps sizes tended to be roughly
(2rcomp + 1) × (2rcomp + 1) or occasionally (2 × (2rcomp + 1)) × (2rcomp + 1).
This is intuitive, since the map size should correspond to the area of the
lattice in which a node must compete for the highest activation in order to
be declared a “winner.” Averaged across all network sizes, each map occu-
pied 200.83 output nodes, which corresponds to a square with sides 14.17
nodes across. This is equivalent to a radius of 6.58 nodes around the central
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node with peak activation, which is close to the value of rcomp = 6 that was
used. If we discount networks that formed only a single pair of interlocking
maps, the value falls to 6.43, becoming even closer to the expected rcomp
value.

For networks 30 × 30 and larger in which multiple adjacent maps formed
consistently, four types of relationships between adjacent maps were ob-
served. Three of these were symmetries (isometries): mirror reflection, glide
reflection, and rotation. The fourth was a pattern that we refer to as inter-
locking rotation. These four relationships are illustrated in Figure 2. For
networks larger than 30 × 30, the great majority of intermap relationships
observed (about 81% overall) were mirror symmetries (see Figures 1c and
2a), in which one map is reflected in an axis that lies along the maps’ mutual
border. A further 6% exhibited a distorted type of mirror-image symmetry
that we labeled glide reflection (see Figure 2b). Glide reflection symmetry is
similar to mirror symmetry, except the reflection occurs along an oblique
axis and is followed by a translation, so about 87% of adjacent maps exhib-
ited reflection symmetries (mirror and glide reflection). Another 11.3% of
neighboring maps exhibited rotational symmetry with their neighbors (see
Figure 2c). Approximately 90% of these rotations were 180 degrees, with the
remainder being 90 degrees. Table 2 compares these observed percentages
of intermap relationships to the theoretically expected percentages of the
eight possible relationships between two maps when map orientations are
determined randomly and independently (assuming a square tiling and
absence of interlocking rotations). As seen in Table 2, the observed per-
centages of reflections (mirror plus glide) are remarkably high compared
to what would be expected. (The 6% observed reflect + rotate relationships
are all glide reflections, which can be viewed as an orthogonal reflection
followed by a rotation.) The proportion of mirror symmetries increases
progressively up to maps of size 40 × 40 and then levels off at about 85%
(or about 91% mirror and glide reflection), rising only slightly as map size
increases further. Also, for 7.5% of networks, there were some very small
areas of the cortical surface that did not organize into a map of the input
space.

We also observed a previously unknown and unexpected type of rela-
tionship between pairs of maps, which we refer to as interlocking rotation.
An example can be seen in Figure 2d. Interlocking maps arose only rarely,
appearing in less than 1% of map pairs in networks 35 × 35 and larger (but
in 100% of networks of size 20 × 20 and 25 × 25). For any of the three pre-
vious types of symmetries, the border between two maps comprises nodes
that are representative of stimuli near one edge of the input space. However,
two maps joined by interlocking symmetry have a common border, which
represents stimuli from the interior of the input space. Such arrangements
seem to arise when there is a surplus of space on the cortex that is needed
for one map to form, but not enough space for two whole maps side-by-
side (networks of size 20 × 20 and 25 × 25). In all of these runs, two maps
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Figure 2: The four types of relationships observed between adjacent maps (left),
along with a schematic diagram of each (right). Each display shows a single pair
of adjacent maps indicated by how a single spiral “painted” on the sensory sur-
face (Figure 1a) is represented. (a) Mirror symmetry, with a vertical reflection
axis in the middle of the cortical surface. (b) Glide reflection symmetry—a dis-
torted mirror symmetry in which the left spiral can be viewed as translated
along an oblique axis (dotted line) and then reflected to match the right spi-
ral. (c) Rotational symmetry, where the right spiral matches the left after a
180 degree rotation about a rotation point (small, solid black circle in center of
schematic). (d) Interlocking rotations in which the interiors of the two spirals
are intertwined.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2009.04-08-763&iName=master.img-001.jpg&w=309&h=384
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Table 2: Approximate Percentages of Adjacent Map Relationships.

Translate Rotate 180◦ Rotate 90◦ Reflection Reflect + Rotate

Expected 12.5 12.5 25 12.5 37.5
Observed (size ≥ 30 × 30) 0 10 1 81 6

Figure 3: Schematic of interlocking rotation. (a) The input space, with eight
sample points labeled A through H. (b) Where the peaks of activation might
fall for each of these labeled points in the interlocking maps that form on the
cortical surface. The representations of the input space have been “unwound”
and compressed so that each copy of the perimeter of the sensory surface,
comprising points from all four sides, covers just two sides of the cortical surface.
Despite the apparent distortion brought about by interleaving the maps, each
point on the cortex maintains the appropriate topographic relationship with its
neighbors. For example, B on the input surface, situated between A, F, and C,
remains surrounded by A, F, and C in the cortical map. Although the two maps
have become unraveled and intertwined, the topographic relationships are still
preserved locally.

formed in each network and aligned themselves in an interlocking pattern.
Figure 3 provides a more detailed characterization of this phenomenon.

To clarify the conditions most likely to lead to interlocking map
formation, we systematically carried out additional experiments with net-
works ranging in size from 15 × 15 to 30 × 30 and with rcomp values varying
between 4 and 8. Ten random runs were done for each combination of
network size and rcomp. Table 3 shows how many of these trials resulted
in a pair of interlocking maps. These results confirm that for all values of
rcomp, very small networks do not have enough space on the output layer

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2009.04-08-763&iName=master.img-002.png&w=309&h=162
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Table 3: Number of Times Two Interlocking Maps Formed in 10 Trials.

Side Length of Square Cortical Layer

r 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

4 4 7 8 10 9 10 8 8 4 3 0 0 0 0 0 0 0 0 0 0 0
5 0 1 2 10 10 10 10 10 9 8 8 9 9 5 3 2 0 0 0 0 0
6 0 0 0 4 7 10 10 10 10 10 10 10 10 6 6 5 4 7 2 1 1
7 0 0 0 0 1 6 7 10 10 10 10 10 10 10 9 7 8 1 4 2 5
8 0 0 0 0 0 0 5 6 9 8 10 10 10 10 10 10 10 10 6 6 4

to support more than a single map, while the larger-sized networks have
enough space to support multiple maps with the usual mirror, glide, and
rotation symmetries. In between this range of network sizes, a single pair
of interlocking maps was the dominant pattern. The networks most suit-
able for interlocking map formation were those with a side length between
approximately 1.5 × (2rcomp + 1) and 2 × (2rcomp + 1).

We also ran five simulations having much larger 120 × 120 output layers
to verify that the results in Table 1 scale up to bigger networks in which any
edge effects will be less influential. The number of maps that formed ranged
from 73 to 87 (mean: 77.2), with an average of 86.4% mirror reflections, 5.1%
glide reflections, and 8.5% rotations, consistent with extrapolation from
Table 1. Figure 4 shows the maps that formed during one of these runs.
All map relationships in Figure 4 are mirror-symmetric except the eight
rotational symmetries labeled R and three glide reflections labeled G. We
interpret this result to indicate that mirror-symmetric relationships between
adjacent maps are to be expected in that they globally minimize the distance
between weight vectors of neighboring nodes. The rotational and glide
relationships generally occurred along “defects” or “fault lines” separating
different uniform domains that have all mirror-symmetric maps. This is
illustrated in Figure 4, where a uniform domain in the uppermost right
quadrant (e.g., the inner “u” of each spiral opens either up or down) can be
distinguished from a different uniform domain throughout the other three
quadrants (inner “u” of all spirals opens left or right), these two domains
being separated by a diagonal boundary zone of maps having reflection
and glide relationships. We hypothesize that such intermap defect lines are
the analog of intramap topological defects (so-called folds or bumps) often
observed in single-map studies (Aoki & Aoyagi, 2007), and that they occur
for the same reason.

For purposes of further analysis, we divided the composite maps formed
with the 160 networks of Table 1 that were of size 30 × 30 and larger into four
mutually exclusive categories, based on the types of symmetries present.
Because it was not possible to measure M for particular isolated pairs of
maps, we grouped the networks together into categories based on the domi-
nant type of symmetry present over the entire cortical area. The interlocking
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Figure 4: Maps forming on a large 120 × 120 output layer. All are mirror-
symmetric except those designated G (glide) or R (rotation).

category are those networks for which the entirety of the cortical surface
was covered by a single pair of interlocking maps, which occurred only for
networks of size 40 × 40 and below. The mainly-mirror category comprises
networks in which all or all but one of the map pairs were mirror-symmetric.
The mixed category are networks that displayed more than one instance
of glide, rotational, or interlocking symmetries, although mirror-symmetric
maps were also present simultaneously. Finally, the unorganized category
is composed of networks that had any unorganized regions on the cortical
surface.

Table 4 shows the mean µ and variance σ 2 of the M measure across all the
networks in each of these four categories. The interlocking maps exhibited
the highest M values, followed by mainly mirror, then mixed, and finally the
unorganized category. Using a t-test, we found that the mean M value for
the interlocking class was significantly higher than that of the mirror class
with p < 0.0001, that the mirror class mean was significantly higher than
that of the mixed class with p = 0.0054, and that for the mixed class was
higher than for the unorganized class but only with p = 0.0331. The higher

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2009.04-08-763&iName=master.img-003.png&w=263&h=263
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Table 4: Values of the Measure M for Symmetry Categories.

Symmetry Category µ σ 2 Na

Interlocking rotation .9881 .0043 50
Mainly mirror .9665 .0091 43
Mixed .9622 .0077 95
Unorganized .9572 .0076 12

aNumber of networks in the category.

Figure 5: Histogram of M values for four different map categories.

M values for the interlocking class can be seen more clearly in Figure 5,
which gives a histogram of the networks’ individual M values for each class.
These high M values may arise because the two maps do not form a strict
border between themselves, but “share” the output nodes that represent the
center of the input space. For comparison, 15 × 15 networks with a single
map had M = 0.9930. Figure 5 also shows that while their mean M values
are close, the distributions of M values for the mirror and mixed class are
substantially different (e.g., they have different mode values).

To test the effect of uneven distributions of input stimuli on the model,
the input space was divided into three approximately equally sized regions.
Region I was composed of the 64 input points located closest to the center,
region III was composed of the 64 input points around the perimeter, and
region II was composed of the remaining 68 points between regions I and III.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2009.04-08-763&iName=master.img-004.jpg&w=263&h=211
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Table 5: Map Formation with Varying Spatial Distributions of Stimuli.

Number of Maps Pairwise Symmetries

Type Mean Minimum Maximum Mirror Glide Rotate Interlock

60 × 60 rim heavy 20.80 16 29 .914 .035 .051 .000
60 × 60 uniform 18.40 15 24 .840 .063 .092 .005
60 × 60 center heavy 23.42 15 29 .696 .125 .178 .001
Overall 20.87 15 29 .817 .074 .107 .002

Using the same procedures and parameter values, we ran two additional
sets of 20 simulations, each having networks with 60 × 60 node output
layers. In the first set of rim-heavy simulations, points in region III were
stimulated three times as often as those in region I, and points in region
II were stimulated twice as often as points in region I. The second set of
center-heavy simulations reversed these ratios.

As seen in Table 5, uneven sampling that was either rim heavy or center
heavy was associated with a small increase in the average number of maps
that formed when compared to the uniform simulations presented earlier.
Rim-heavy simulations had the highest proportion of map pairs exhibit-
ing mirror symmetries. Conversely, center-heavy simulations formed fewer
mirror symmetries than the uniform-stimuli baseline. The mean M values
for rim-heavy, uniform, and center-heavy networks were 0.9583, 0.9644, and
0.9570, respectively. The score of the uniform category is significantly higher
than either of the others at a 99% confidence level, but there is no statisti-
cally significant difference between center-heavy and rim-heavy networks.
If one examines all neighbors’ pairwise dot products rather than just the
smallest 2% used in the M-metric, the rim-heavy network had more pairs
of nodes with very similar weights, while the center-heavy network’s dis-
tribution showed nodes that are farther apart on average, and the uniform
network fell in between. Recalling that there were more mirror symmetries
in the rim-heavy network, followed by uniform, and finally center heavy,
thus offers confirmation that mirror symmetries allow more adjacent nodes
to minimize the distance between their weight vectors.

We also explored the possibility of magnification effects resulting from
nonuniform stimuli. More frequent stimulation or greater innervation of a
sensory region often causes that region’s representation on the cortical map
to be disproportionately large (Dykes & Ruest, 1984; Kohonen, 2001). The
proportion of the cortex representing the three sensory regions, for uniform
and nonuniform stimuli distributions, is shown in Table 6. For uniform
stimulations, we find that central region I is overrepresented on the cortical
surface, and rim region III is underrepresented compared to the roughly
equal distributions one might expect. Under the rim-heavy distribution, the
most stimulated area, region III, increased to 40.4% of the cortex, consis-
tent with magnification effects seen in past single-map studies (Grajski &
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Table 6: Proportion of Cortical Nodes Representing Each Sensory Region.

Type Region I Region II Region III

60 × 60 rim heavy .283 .313 .404
60 × 60 uniform .452 .344 .204
60 × 60 center heavy .474 .259 .267
Overall .403 .305 .292

Merzenich, 1990; Sutton, Reggia, Armentrout, & D’Autrechy, 1994), while
region I decreased to 28.3% (significantly different from the uniform case
with p < 10−6). An opposite magnification effect is also evident for the
center-heavy distribution (p < 10−6).

4 Discussion

The model of map formation presented here, while greatly simplified from
biological reality, produces individual maps with many features that are
reminiscent of topographic map formation in nature and many past compu-
tational models of single map formation. Multiple maps emerged over the
cortical surface solely as a by-product of the tendency of Hebbian learning
to have adjacent output nodes take on similar weight vectors. The limited
radius at which nodes compete with one another relative to the size of the
network allowed the multiple maps that formed to arrange themselves with
four different types of intermap relationships. Of these, the mirror, glide,
and rotational symmetries were previously observed in a similar study lim-
ited to maps with one-dimensional adjacencies that form along a narrow
cortical strip (Schulz & Reggia, 2005), and in similar proportions. The key
point is that in both this and the earlier study, adjacent maps became ori-
ented with reflection symmetry in the vast majority of cases: 87% and 93%,
respectively, counting mirror and glide reflections, indicating that map for-
mation in one region strongly influences is influenced by that in adjacent
regions. Further, in the largest networks, the rotational and glide relation-
ships tended to occur along fault lines between regions where maps were
all uniformly mirror-symmetric, suggesting that such relationships are the
intermap analog of topological defects sometimes observed inside single
maps (Aoki & Aoyagi, 2007). We also found that changing the distribution
of stimuli occurring over the sensory surface resulted in magnification ef-
fects in the cortical maps and that when the points near the edges of the
sensory surface were stimulated more frequently than other points, mir-
ror symmetries became more common, presumably due to the increased
similarity between edges of adjacent maps that this produced.

We also noted a new type of relationship between maps that was not
present in previous work, which we refer to as interlocking rotation. These
were likely not formed in the previous study (Schulz & Reggia, 2005)
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because the cortical regions of the networks being considered were all
11-node-wide strips, while interlocking maps seem to occur only when
there is more than enough room for one map but less than enough for two.
More specifically, our simulations showed a minimum size for two inter-
locking maps to form and a maximum size at which they are common,
even though they have higher M values than mirror, glide, or rotational
symmetric maps. Judging from the M metric, interlocking symmetries are a
more efficient arrangement of the cortex, but because it does not have clear
distinctions between where one map begins and the other ends, it may not
lend itself to the improved downstream processing and parallelization pro-
posed as a possible benefit of multiple maps (Kaas, 1988; Levitt, 2000; Zhou
& Black, 2000).

Finally, we speculate on the significance of non-mirror-image map re-
lationships, such as rotation symmetric and interlocking rotation maps.
Given the remarkably common finding of mirror-image adjacent maps in
the cortical regions of many species and that they form the vast majority
of intermap relationships in our computational model, it seems reasonable
to view mirror-image maps as the norm. Presumably the genetically deter-
mined topographic organization of interregional connections and pathways
has evolved to be consistent with such mirror-image orientations. Assum-
ing this is so raises the question of what would happen if, as occurred with a
small percentage of our computational cases, two adjacent maps organized
during development to have rotational or interlocking rotational relation-
ships. We hypothesize that such atypically oriented adjacent maps, in the
context of normal connectivity between cortical regions, would be expected
to cause abnormal cortical information processing and that this might ac-
count for some of the cognitive deficits and functional imaging changes
observed in childhood neurodevelopmental disorders such as dyslexia,
dyscalculia, autism spectrum disorder, and specific language impairment.
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