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ADVERSARIAL ATTACKS

+ .007 X

panda attack perturbation “gibbon”
57-7% 99.3%

An attacker can make small perturbation that are numerically significant,
but semantically & perceptually meaningless.

What to do?

Make our own perturbations.

Image from: Goodfellow, et al. “Explaining and Harnessing Adversarial Examples.” ICLR, 201s5.



TRANSFORMATIONS FOR DEFENSE

original image
* Modify the image at inference time. T T

- e.g. by blurring, adding noise, desaturating.

* This should interfere with the adversary’s ability
to find a successful attack perturbation.

 This has been tried before...
...and it didn’t work.

* It makes following the gradient between original
and attacked image only trivially harder.




TRANSFORMATIONS FOR DEFENSE

Modify the image at inference time.
- e.g. by blurring, adding noise, desaturating.

* This should interfere with the adversary’s ability
to find a successful attack perturbation.

* This has been tried before...
...and it didn’t work.

* It makes following the gradient between original
and attacked image only trivially harder.

So what’s different with BaRT?

1. Take a large set of transformations.
2. Parameterize each one randomly.
3. Randomly select a subset to apply for each input.

4. Apply them in randomized, serial order.




TRANSFORMATIONS FOR DEFENSE
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Modify the image at inference time.
- e.g. by blurring, adding noise, desaturating.

* This should interfere with the adversary’s ability
to find a successful attack perturbation.

* This has been tried before...
...and it didn’t work.

* It makes following the gradient between original
and attacked image only trivially harder.

jection

Transform 3:
4 Partial Gray

So what’s different with BaRT? -
T i g alk l‘:i‘l L ': _E : 1 ' 5 ’ e p
i d '.\.‘ 3 ;:L' _l:_j 'l- '- L -‘:é; ; : - o

1. Take a large set of transformations.

2. Parameterize each one randomly.
3. Randomly select a subset to apply for each input.

4. Apply them in randomized, serial order.




Example output #1 Example output #2 Example output #3
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EXAMPLES OF SINGLE TRANSFORMS

Alter XYZ
Convert to CIE XYZ color space, perturb
w/ random offset, convert back to RGB

Alter LAB
Convert to CIE LAB color space, perturb
w/ random offset, convert back to RGB

Gaussian Blur
Blur using a Gaussian with randomly
chosen standard deviation




MANY WEAK DEFENSES MAKE A STRONG DEFENSE

* Twenty five weak defenses to choose from.
— On their own, each can be easily defeated.
— When ensembled together, they provide state-of-the-art defense.
— “Randomness on top of randomness”

Original image Example image, Example image,
5 transforms 5 transforms




RANDOMNESS ON TOP OF RANDOMNESS

Instead of attacking this: ...you have to attack this:

(Example images, 5 transforms)

 Every time the adversary takes another gradient step, the image is being transformed differently.
* The direction to the decision surface is changing, so subsequent gradient steps are not aligned.




RESULTS: VARYING ATTACK STRENGTH
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Created the strongest adversaries we could (PGD).

Implemented BPDA and EoT to allow the
adversary to approximate each transform.

Allowed attacker to know the randomly chosen
parameters of each defense.

Allowed adversarial distance of up to e=32.
Thoroughly tested for obfuscated gradients.

Created a new attack we thought might be
better able to defeat BaRT.

BaRT surpasses the previous state-of-the-art
defense for ImageNet. (Adversarial Training.*)

Top-5 accuracy of >57% when under attack.

Higher Top-1 accuracy than the Top-5 accuracy
of Adversarial Training when €= 4.

* Kurakin, Goodfellow & Bengio. “Adversarial Machine Learning at Scale.” ICLR, 2017. 8



VARYING NUMBER OF DEFENSIVE TRANSFORMS:
UNTARGETED ATTACKS

* Adding more transforms to the ensemble costs
accuracy when not being attack.
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* But it increases accuracy when under attacked.
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--0-- No attack Top-1--0-- No attack Top-5
—o— PGD Top-1 = PGD Top-5




VARYING NUMBER OF DEFENSIVE TRANSFORMS:
TARGETED ATTACKS

1 1 1 1 T T 1 ¢ With no defensive transforms, the PGD attacker
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» With 10 defensive transforms, success falls to 0%.
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CONCLUSIONS Future work:

* By integrating domain knowledge * Fine tune transformations &
(image transforms) and add others to the pool of
randomness (ensembling), we options.
develop a new defense against * Ensembling expands BaRT’s
adversarial attacks. defense-in-depth to allow

* We provide evidence that weak defense-in-width as well.
defenses can have value. « Apply to other domains.

* BaRT is simple to implement & * Can we use randomness to
use in the short term, and gives us build a provably robust
inspiration on how we might defense?

develop long-term defenses.  Adapting defensive strength

(i.e., number of transforms) vs.
throughput for real-world
applications.
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