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Abstract—No methods currently exist for inducing fairness in
arbitrary neural network architectures. In this work we introduce
GRAD, a new and simplified method for producing fair neural
networks that can be used for auto-encoding fair representations
or directly with predictive networks. It is easy to implement and
add to existing architectures, has only one (insensitive) hyper-
parameter, and provides improved individual and group fairness.
We use the flexibility of GRAD to demonstrate multi-attribute
protection.

Index Terms—fairness, neural networks, ease of use

I. INTRODUCTION

Artificial Neural Network methods are quickly becoming
ubiquitous in society, spurred by advances in image, signal,
and natural language processing. This pervasiveness leads to
a new need for considering the fairness of such networks
from many perspectives, including: how they are used, who
can access them and their training data, and potential biases
in the model itself. There are many reasons for desiring fair
classification algorithms. These include legal mandates to be
non-discriminative, ensuring a moral or ethical goal, or for
use as evidence in legal proceedings [1]. Despite the long-
standing need and interest in this problem, there are few
methods available today for training fair networks.

When we say that a network is fair, we mean fair with
respect to a protected attribute ap, such as age or gender. Our
desire is that a model’s predicted label ŷ given a feature vector
x is invariant to changes in ap. An initial reaction may be to
simply remove ap from the feature vector x. While intuitive,
this does not remove the correlations with ap that exist in the
data, and so the result will still produce a biased model [2].

For this reason we need to devise approaches that explicitly
remove the presence of ap from the model’s predictions. We
do so in this work by introducing a new method to train
fair neural networks. Our approach, termed Gradient Reversal
Against Discrimination (GRAD), makes use of a network
which simultaneously attempts to predict the target class y and
protected attribute ap. The key is that the gradients resulting
from predictions of ap are reversed before being used for
weight updates. The result is a network which is capable of
learning to predict the target class but effectively inhibited
from being able to predict the protected attribute.

GRAD displays competitive accuracy and improved fairness
when compared to prior approaches, despite introducing only
one new hyper-parameter (which in practice does not need

adjustment). Combined with GRAD’s flexibility with respect
to network architecture, this makes it easier to apply — an
important consideration for obtaining practical use [3]. Addi-
tionally GRAD is the first, to the authors’ knowledge, neural
network-based approach that can protect multiple attributes
simultaneously. Prior works in this space are generally limited
to one attribute and require the introduction of multiple hyper-
parameters. These parameters must be cross-validated, making
the approaches challenging to use. Further, our approach can be
used to augment any current model architecture, where others
have been limited specifically to auto-encoder architectures.

The rest of our paper is organized as follows. In section II
we will discuss the related prior work in building fair neural
networks. In section III we will introduce our new approach,
which dramatically simplifies the process. Then we will review
the evaluation methodology in section IV, followed by our
results in section V. We will discuss these results in section VI
and then conclude in section VII.

II. RELATED WORK

The first work that explored using neural networks for
fairness was the Learning Fair Representations (LFR) approach
by Zemel, Wu, Swersky, et al. [4]. This seminal approach
was based on constructing an auto-encoder combined with
a prototype-based projection. Each datum x was mapped to
each prototype in a weighted combination, with a constraint
that the distribution of points by their protected attribute ap
is equal across the prototypes. Classification was then done
by training a normal Logistic Regression model on top of
these prototypes. In addition, a loss based on the prediction
of the label y from the prototypes was included to encourage
task specific performance, making three total loss terms. A
hindrance of using the LFR approach in practice is that each
of the loss terms introduces its own hyper-parameter, requiring
a cumbersome increase to the amount of hyper-optimization
that must be done. Zemel, Wu, Swersky, et al. also introduced
metrics to quantify the fairness of a predictor: one for group
fairness and one for individual fairness. We will use these same
measures and discuss them further in section IV, though the
other works we evaluate have unfortunately chosen to ignore
the individual-fairness metric.

Following the seminal work of Zemel, Wu, Swersky, et
al., Louizos, Swersky, Li, et al. [5] introduce the Variational
Fair Auto-Encoder (VFAE). Their work proposed to treat the



problem of fair prediction as a domain adaptation problem,
and that by treating the protected attribute as a new domain
one could coax the network to learn a representation invariant
to ap. We will use this same insight in our own design for a
fair network.

As the VFAE name alludes to, it extends the Variational
Auto-Encoder to the task of fair classification, and again uses
Logistic Regression trained on the hidden representation to
perform prediction. Fairness is obtained by using the Maximum
Mean Discrepancy (MMD) to perform domain adaptation. This
introduces two hyper parameters α and β that must be dealt
with.

The final pre-existing approach to constructing fair neural
networks is Adversarial Learned Fair Representations (ALFR),
developed by Edwards and Storkey [6]. Their work combines a
Generative Adversarial Network (GAN) [7] with auto-encoding,
with supervised prediction of the target attribute y, and with
a negative log-loss on the protected attribute. This introduces
three new hyper-parameters to balance between the network’s
auto-encoding, log-loss, and negative log-loss terms, in addition
to the GAN-specific hyper-parameter search that must be
done to balance the representational power of the generative
and adversarial portions of the network. Another issue for
practical use is the general convergence challenges that exist
with GANs [8].

While LFR and AFRL have an auto-encoding component,
they are also tied to predicting a specific attribute. This means
they are not as task-flexible as VFAE is (though Zemel, Wu,
Swersky, et al. did include a brief discussion of results that
exclude the y-based terms for task-flexible use). In approaches
like VFAE, the construction of a fair representation via just
auto-encoding means the hidden representations can be shared
and used for multiple predictive tasks, without needing to re-
create new representations for each task. Our GRAD approach,
with its greater flexibility, can be used in auto-encoding or
directly predictive styles. This allows balance between the
need for sharing (one encoding for multiple tasks) and better
potential accuracy through specificity (one encoding for one
task). GRAD is also the only approach that does not mandate
an auto-encoding component, which we hypothesize allows for
its higher group fairness.

Other non-neural network approaches to fairness have been
developed as well. These include attempts to protect attributes
by modifying the features [9] and modifying the labels [10] of a
dataset. A prevalent strategy is to introduce a new regularization
term that penalizes use of the protected attribute [11]–[14], of
which our work is a member. In all of these prior works, it
is assumed that both the classification task and the attribute
to protect are binary, and that only one attribute needs to be
protected. The flexibility of GRAD does not constrain it to
this type of problem, but we re-use it so that we can compare
with prior work.

In subsection V-B we also investigate and discuss the
protection of multiple attributes simultaneously. This is a
critical feature for practical use of fairness systems. In any
situation in which there are sensitive attributes, it is likely

that more than one is present. For instance, datasets with
demographic information likely contain more than one feature
from the eight “protected classes” defined in federal anti-
discrimination law in the United States. While other techniques
may potentially be adapted to multiple attributes simultaneously
the vast majority of prior papers do not discuss how to adjust
their techniques to account for this situation, nor do they
present the results of doing so. We are aware of only two prior
papers which explicitly examine the protection of multiple
attributes. Johndrow and Lum [15] mention that their approach
is compatible with this goal, but do not discuss it further. Zafar,
Valera, Rogriguez, et al. [16] showed the results of protecting
gender and race concurrently with a modified logistic regression
system, but their treatment of the topic was limited to a couple
of sentences and a footnote, and presented no analysis or
discussion of the results. While this is a valuable contribution,
we feel that this is an important practical issue that deserves a
more thorough treatment. We are aware of no other work that
has tackled this issue, and so we attempt here to add to the
discussion of protecting multiple attributes.

III. GRADIENT REVERSAL AGAINST DISCRIMINATION

We now present our new approach to developing neural
networks that are fair with respect to some protected attribute.
We call it Gradient Reversal Against Discrimination (GRAD),
and it is inspired by recent work in transfer learning. Notably,
Ganin, Ustinova, Ajakan, et al. [17] introduced the idea of
domain adaptation by attempting to jointly predict a target
label and a domain label (i.e., which domain did this data
instance come from?). By treating the protected attribute as the
new domain, we can use this same approach to instead prevent
the network from being biased by the protected attribute.

A sketch of the architecture used for GRAD can be seen in
Figure 1. After several feature extraction layers the network
forks. One branch learns to predict the target y, while the other
attempts to predict the protected attribute ap. We term the
portion of the network before the splitting point the “trunk,”
and those portions after the “target branch” and the “attribute
branch.” The final loss of the network is sum of the losses of
both branches.

`(y, ap) = `t(y) + λ · `p(ap) (1)

Here, λ determines the relative importance of fairness compared
to accuracy. In practice, we find that performance is insensitive
to particular choices of λ, and any value of λ ∈ [50, 2000]
would perform equivalently. In our experiments we will use
λ = 100 without any kind of hyper-parameter optimization.

The values of both `t(y) and `p(ap) are calculated and
used to determine gradients for weight updates as usual, with
one important exception. When the gradients have been back-
propagated from the attribute branch they are reversed (i.e.,
multiplied by −1) before being applied to the trunk. This
moves the trunk’s parameters away from optima in predictions
of ap, crippling the ability to correctly output the protected
attribute. Since the target branch also depends on the trunk
parameters, it inherits this inability to accurately output the
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Fig. 1. Diagram of GRAD architecture. Red connection indicates normal
forward propagation, but back-propagation will reverse the signs. The value
x is the input to the network, and the terminal nodes are the losses that get
back-propagated.

value of the protected attribute. No such reversal is applied to
the gradients derived from y, so the network’s internal state
representations are suitable for predicting y but nescient of ap.

In order to understand why we attempt to have the attribute
branch correctly predict ap and then reverse the resulting
gradient, it is instructive to consider why it may be insufficient
to set up a loss function which directly punishes the network
for correctly predicting ap. If this were the case, the network
could achieve low loss by forming internal representation which
are very good at predicting the protected attribute, and then
“throw the game” by simply reversing the correct prediction in
the penultimate layer. (That is, a potential, reliable strategy to
getting the wrong answer is to become very good at getting the
right answer, and then lying about what one thinks the answer
should be.) If this strategy were adopted then the representations
necessary for correctly recovering ap from x would be available
to the target branch when making its prediction of y, which is
the situation we aim to prevent.

Architecture Variants

As mentioned above, many of the other neural approaches
to fair classification take an auto-encoder or representation
learning approach. This approach has its advantages. For
instance, it allows the person constructing the fair model to be
agnostic about the ultimate task that it will be applied to. Others
like ALFR consider a target value directly, and so can not be
re-used for other tasks, but may perform better in practice on
the specific problem they were constructed for.

Our GRAD approach, thanks to its comparative simplicity,
can be used in both formulations. This makes it the only
neural network-based approach to fairness that offers both task
flexibility and specificity.

GRAD-Auto will designate our GRAD approach when we
use an auto-encoder as the target branch’s loss. That is to say,
if x is the input feature, we will denote x̃ as the feature vector

derived from x such that the protected attribute ap /∈ x̃. We then
use `Auto

t (·) = ||htarget − x̃||22 as the loss function for the target
branch, where htarget is the activation vector from the last layer
of the target branch. This approach matches the same style as
the LFR and VFAE approach, where a hidden representation
invariant to ap is learned, and then Logistic Regression is used
on the final activations from the trunk sub-network to perform
classification.

GRAD-Pred will designate our task-specific approach, where
we use the labels yi directly. Here we simply use the standard
logistic loss `Pred

t (·) = log(1+exp(−y ·htarget)). In this case the
target branch of the network will produce a single activation,
and the target branch output itself is used as the classifier
directly.

Since we are dealing with binary protected attributes, both
GRAD-Auto and GRAD-Pred will have the attribute branch
of the network use `p(ap) = log(1 + exp(−ap · hattribute)). We
can also protect multiple attributes simultaneously. Considering
Z different values to protect, we can use `p(ap1 , . . . , apZ ) =∑
∀z∈Z log(1 + exp(−apz · hattributez )).
In the spirit of minimizing the effort needed by the prac-

titioner, we do not perform any hyper-parameter search for
the network architecture either. Implemented in Chainer [18],
we use two fully-connected layers for every branch of the
network (trunk, target & attribute) where all hidden layers
have 40 neurons. Each layer will use batch-normalization [19]
followed by the the ReLU activation function [20]. Training is
done using the Adam optimizer for gradient decent [21]. We
train each model for 50 epochs, and use a validation set to
select the model from the best epoch. We define best by the
model having the lowest Discrimination (see §IV-A) on the
validation set, breaking ties by selecting the model with the
highest accuracy. When multiple attributes are protected, we
use the lowest average Discrimination.

IV. METHODOLOGY

There is currently ongoing debate about what it means for
a machine learning model to be fair, which metrics should be
used, and whether or not they can be completely optimized [22]–
[26].

We choose to use the same evaluation procedure laid out
by Zemel, Wu, Swersky, et al. [4]. This makes our results
comparable with a larger body of work, as their approach and
metrics have been widely used through the literature (e.g. [12],
[14], [27], [28]). We present results for both of the metrics
they adopt: Discrimination and Consistency.

A. Metrics

Given a dataset {x1, . . . , xn} ∈ D, we define the ground
truth label for the ith datum as yi and the model’s prediction
as ŷi. Each are with respect to the binary target label y ∈
{0, 1}. While we define both yi and ŷi, we emphasize that
only the predicted label ŷi is used in the fairness metrics.
This is because fairness is not directly related to accuracy by
equality of treatment.



Discrimination (also referred to as “demographic parity”)
is measured by the taking the difference between the average
predicted scores for each attribute value, assuming ap is a
binary attribute.

Discrimination =

∣∣∣∣∣
∑
xi∈Dap

ŷi

|Dap |
−

∑
xi∈D¬ap

ŷi

|D¬ap |

∣∣∣∣∣ (2)

Here, Dap ⊂ D is the subset of data which possesses the
sensitive or protected value of ap, while D¬ap⊂ D does not.
Thus Dap∪ D¬ap = D and Dap∩ D¬ap = ∅. Discrimination
measures a macro-level quality of fairness, requiring the model
to have the same prediction rate for the target value y in each
population. As such it is measuring group-fairness.

Discrimination is the only fairness metric considered in both
the VFAE and ALFR works [5], [6], but Discrimination is not
sufficient as a metric to satisfy a desired notion of fairness [24].
There may easily exist sub-populations within ap and ¬ap for
which the average predictions differ greatly within the sub-
populations [15], [29].

To quantify this scenario, the metric of Consistency was
introduced as a measure of individual-fairness.

Consistency = 1− 1

N

N∑
i=1

∣∣∣∣∣∣ŷi − 1

k

∑
j∈k-NN(xi)

ŷj

∣∣∣∣∣∣ (3)

For each datum xi ∈ D, we compare its prediction yi with the
average of its k nearest neighbors. Consistency is the average
of this score across all points in D.

Because Consistency and Discrimination are independent
of the actual accuracy of the method used, we also consider
the Delta score, where Delta = Accuracy − Discrimination.
This gives a combined measure of an algorithm’s accuracy that
penalizes it for biased predictions.

We use and evaluate Consistency, Discrimination, and Delta
in the same manner and on the same datasets as laid out in
Zemel, Wu, Swersky, et al. [4] so that we can compare our
results with prior work. This includes using the same training,
validation, and testing splits.

When Protecting Multiple Attributes: In our work, we
will also consider the ability to protect multiple attributes
simultaneously. When we do so, we will use Discrimination(x)
to refer to the Discrimination score with respect to a spe-
cific attribute. If we have Z attributes to protect, we use
Delta = Accuracy − Z−1

∑
z∈Z Discrimination(az). That is

to say, we extend Delta as the accuracy minus the average
Discrimination.

B. Data Sets

To evaluate our work, we will use three classification datasets
used by Zemel, Wu, Swersky, et al. [4] and one from Edwards
and Storkey [6]. The first, second and fourth datasets can be
obtained from the UCI repository [30].
• German Credit: This corpus has n = 1, 000 and 20

features (7 numerical, 13 categorical). The goal is to
predict if someone has good or bad credit, and the

protected attribute ap is whether the person is 25 years
of age or older.

• Adult Income: Here n = 45, 222 after removing instances
with missing values. There are 14 predictive variables,
including the protected attribute of gender (male or
female). The goal is predict if an individual’s income
is ≥ $50, 000 per year.

• Heritage Health: This is the largest dataset at n =
147, 473, and was introduced in a Kaggle competition [31].
We use the same 139 features developed by the winning
Kaggle team, and the protected attribute is whether the
patient is 65 years old or older. The goal is to predict if
they will spend one or more days in the hospital this year.

• Diabetes: This dataset has 101,765 rows and attempts to
predict if a patient will be re-admitted to the hospital. The
protected attribute is race (Caucasian/not Caucasian).

We make a special note that while we compare results on
the Diabetes dataset, we are unable to use exactly the same
features. We present the results anyway under the belief that
imperfect comparison is better than none at all. The original
feature set presented by Strack, DeShazo, Gennings, et al. [32]
has 47 categorical features. However, Edwards and Storkey
[6] reported using 235 features without specifying how these
features were extracted from the original set. There are three
columns in the original Diabetes dataset related to diagnostic
hospital codes. If performing a one-hot encoding, the diagnostic
feature subset yields 701 unique occurring values, which would
already eclipse the number of features reported by Edwards
and Storkey. In attempts to be as compatible as possible with
Edwards and Storkey, we map each of the values in these three
columns to nine high-level groups as outlined in Table 2 of
Strack, DeShazo, Gennings, et al. [32], and leave all other
features as-is. We then perform one-hot encoding to obtain a
feature space of 611 features. This is closer to the 235 reported
by Edwards and Storkey [6]. As a result, we caution the reader
against inferring too much from such comparisons, but present
them so as to provide at least some amount of analogy with
ALFR.

C. Models Evaluated

As a baseline for comparison against GRAD-Pred and
GRAD-Auto, we will consider the same architecture but with
the attribute branch removed. This produces a standard neural
network, and will be denoted as NN. We also consider a
standard logistic regression model. These give us some idea
what the accuracy, discrimination and consistency would be
if no efforts were made toward achieving fair outcomes. For
comparison with other fairness-seeking algorithms, we present
prior results for fair Logistic Regression (LRF) [11], fair Naive
Bayes (NBF) [9], Fair Random Forests (FF) [33], Learning
Fair Representations (LFR) [4], Variation Fair Auto-Encoders
(VFAE) [5], and Adversarial Learned Fair Representations
(ALFR) [6].

For all models on all datasets, we report the metrics as
presented in their original publications. The VFAE and ALFR
works only show scores in plots [5], [6], so we extract the



TABLE I
FOR EACH DATASET WE SHOW ACCURACY, DELTA, DISCRIMINATION, AND CONSISTENCY FOR OUR NEW METHOD AND PRIOR WORK. NN-* MODELS ARE

NEURAL NETWORKS WITH λ = 0 (I.E. IGNORING FAIRNESS AS A GOAL), WHILE GRAD-* MODELS HAVE λ = 100. *-AUTO MODELS USE AN
AUTOENCODER FORMAT, WHILE *-PRED PERFORM CLASSIFICATION. BEST RESULTS SHOWN IN BOLD, SECOND BEST IN italics.

German Adult Health

Algorithm Acc Delta Discr Cons Acc Delta Discr Cons Acc Delta Discr Cons

NN-Auto 0.7350 0.5334 0.2016 0.8730 0.7635 0.7191 0.0444 0.9850 0.8506 0.7939 0.0567 0.9730
GRAD-Auto 0.6750 0.6296 0.0454 0.8705 0.7554 0.7452 0.0102 0.9924 0.8491 0.8491 0.0000 1.0000
NN-Pred 0.7500 0.3637 0.3863 0.6945 0.7022 0.6268 0.0754 0.8168 0.8440 0.7511 0.0929 0.9453
GRAD-Pred 0.6750 0.6744 0.0006 0.9705 0.7543 0.7543 0.0000 1.0000 0.8493 0.8486 0.0007 0.9999

NBF 0.6888 0.6314 0.0574 0.6868 0.7847 0.7711 0.0136 0.5634 0.6878 0.5678 0.1200 0.5893
FF 0.7000 0.7000 0.0000 1.0000 0.7530 0.7530 0.0000 1.0000 0.8474 0.8474 0.0000 1.0000
LR 0.6790 0.5517 0.1273 0.6950 0.6787 0.4895 0.1892 0.7297 0.7547 0.6482 0.1064 0.7233
LRF 0.5953 0.5842 0.0111 0.8716 0.6758 0.6494 0.0264 0.7766 0.7212 0.7038 0.0174 0.6223
LFR 0.5909 0.5867 0.0042 0.9408 0.7023 0.7018 0.0006 0.8108 0.7365 0.7365 0.0000 1.0000
VFAE 0.7270 0.6840 0.0430 — 0.8129 0.7421 0.0708 — 0.8490 0.8490 0.0000 —
ALFR — — — — 0.8251 0.8241 0.0010 — — — — —

score from the figures.1 For the Diabetes dataset, we were able
to run the Fair Forest algorithm to produce our own scores.

V. RESULTS

Now that we have explained our methodology, we can begin
examining the results of our GRAD approach compared to
prior works. The majority of methods examined the same
datasets used by Zemel, Wu, Swersky, et al. [4]. For this
reason we group them together, and the results can be seen
in Table I. In each column we present Accuracy, Delta (our
primary metric), Discrimination, and Consistency (Equation 3).
For values unreported in their original work, we show a dash
(“—”) in the table. Our GRAD approach is shown in the top
rows, where “NN” indicates the same network trained with
λ = 0 (i.e., no fairness goal). The bottom seven rows include
the other approaches as explained in subsection IV-C.

When we compare the standard neural network (NN) with
its GRAD counterpart, we can see that the GRAD approach
always increases the Delta and Consistency scores, and reduces
the Discrimination. This shows its applicability across network
types (classifying and auto-encoding). We can even see the
GRAD approach improve accuracy on the Adult dataset by 5
percentage points. While we would not expect this behavior (i.e.
a negative cost of fairness) in the general case, it is nonetheless
interesting and it may indicate that the protected gender attribute
of the adult dataset is misleading to the normal network’s
learning.

Comparing the GRAD algorithms to the other neural
networks LFR, VFAE and ALFR, we see that GRAD is usually
best or 2nd best in each metric. On both the Adult and Health
datasets, it achieves the best Discrimination and Consistency
scores compared to any of the algorithms tested. On the German
dataset VFAE obtains a higher Delta score by having a high
accuracy, though VFAE has 4% discrimination compared to

1This was done using the website https://apps.automeris.io/wpd/. Both papers
are on arXiv.org, but the LATEX source does not have the values in question.
Authors were contacted for each paper but did not reply.

GRAD-Pred’s 0.06%. On the Health dataset, GRAD-Auto and
GRAD-Pred have near identical results, and differences in the
4th significant figure is the only distinguishing factor. This is
overall significantly better than the LFR approach which has
an 11 percentage point difference in Accuracy and Delta scores
compared to the GRAD approaches. The VFAE algorithm is
similarly within a fractional distance, though Consistency is
not reported for VFAE.

For the methods where Consistency was reported, we empha-
size that GRAD approach reliably produces high Consistency
scores regardless of the version, and one of the GRADs always
obtained the best Consistency. As discussed in section IV,
Consistency is an important metric to quantify that captures
information about sub-population level discrimination. It may
be possible that ALFR achieves its higher accuracy by being
consistent at a macro level while being inconsistent in its
predictions at the micro-level. This is not known since it was
left unreported, and is the reason we make sure to include
Consistency in our results.

A. Diabetes Results

In this section we present the results on the Diabetes dataset.
As mentioned in section IV, the results for FLR and ALFR
are taken from Edwards and Storkey [6]. For this reason their
values have an asterisk (*) to indicate that are not perfectly
comparable.

The results are shown in Table II, where we see that LFR
and ALFR appear to both have superior accuracy compared to
the neural networks presented in this work. ALFR appears to
have comparable Discrimination, though GRAD-Auto produces
the lowest Discrimination score. The GRAD approach does not
look as competitive in this table, but we suspect the performance
difference is due to the feature disparity.

We draw this conclusion in part because NN-Pred, which is
a normal fully connected network, obtains an accuracy lower
than the LFR or ALFR approaches. It would be unusual to
expect adding the fairness constraint to any classifier would

https://apps.automeris.io/wpd/


significantly increase accuracy. If it was the case that the
fairness acted as a regularizer, we would expect NN-Pred to
have increased accuracy as well, as we observed on the Adult
and Health datasets. Altering the network size of NN-Pred
did not significantly change these results. Thus we believe the
better performance of LFR and ALFR is due to the unspecified
feature construction used in Edwards and Storkey [6].

Considering just our GRAD approach, we do see that it
continues to successfully reduce Discrimination and increase
Consistency in all cases. This makes GRAD successful in its
goal of improving the fairness of the naive neural networks.

B. Multiple Protected Attributes

In all but one prior works that we are aware of, it is assumed
that there is only one attribute that needs to be protected.
This is, however, a myopic view of the world. All of the
protected attributes that have been tested individually in this
work, like age, race and gender, may co-occur and interact
with each other in a single corpus. (Why would one need to
protect age when predicting credit score, and gender when
predicting income, but not vice versa? Yet this is exactly what
the standard benchmarks would have one do.) We show this
interaction between potentially protected attributes in Table III
using the Diabetes dataset, which has both race and gender as
features in the corpus. In this case GRAD-Pred and GRAD-
Auto are protecting race and gender attributes. GRAD-Pred-R
shows the results for protecting only race, and GRAD-Pred-G
shows for only protecting gender. GRAD-Auto follows the
same convention.

Since Discrimination is computed with respect to specific
attributes, in the table we show the discrimination scores with
respect to both of the protected attributes. Since we have two
protected attributes ap1 and ap2 , we compute Delta = Accuracy
−( Discrimination(ap1 ) + Discrimination(ap2 ) )/2. In doing so,
we can see that when two protected variables are present, the
GRAD approach is able to reduce Discrimination and increase
Delta for both the auto-encoder and the standard softmax
predictive network. GRAD-Pred also continues to increase the
Consistency with respect to the naive neural network.

TABLE II
ACCURACY, DELTA, DISCRIMINATION, AND CONSISTENCY FOR GRAD
AND PRIOR WORK ON THE DIABETES DATASET. BEST RESULTS IN BOLD,

SECOND BEST IN italics. ASTERISK (*) INDICATES RESULTS USING A
DIFFERENT FEATURE SET.

Algorithms Acc Delta Discrm Cons

NN-Auto 0.5735 0.5323 0.0412 0.6411
GRAD-Auto 0.5851 0.5848 0.0003 0.6404
NN-Pred 0.6286 0.5868 0.0418 0.6464
GRAD-Pred 0.5844 0.5824 0.0020 0.7538

FF 0.5390 0.5385 0.0005 0.9974
LFR* 0.6413 0.6271 0.0142 —
ALFR* 0.6537 0.6524 0.0013 —

TABLE III
ACCURACY, DELTA, DISCRIMINATION (WITH RESPECT TO RACE AND

GENDER), AND CONSISTENCY FOR OUR NEW METHOD ON THE DIABETES
DATASET. BEST RESULTS IN BOLD, SECOND BEST IN italics. LAST FOUR

ROWS SHOW GRAD MODELS WHEN ONLY RACE (R) OR GENDER (G) ARE
PROTECTED.

Discrimination

Algorithms Acc Delta Race Gender Cons

NN-Auto 0.5735 0.5392 0.0412 0.0275 0.6411
GRAD-Auto 0.5765 0.5723 0.0055 0.0030 0.6288
NN-Pred 0.6286 0.5848 0.0418 0.0458 0.6464
GRAD-Pred 0.5980 0.5949 0.0028 0.0034 0.7180

GRAD-Auto-R 0.5851 0.5749 0.0003 0.0201 0.6404
GRAD-Auto-G 0.5640 0.5143 0.0981 0.0013 0.6093
GRAD-Pred-R 0.5844 0.5478 0.0020 0.0713 0.7538
GRAD-Pred-G 0.5941 0.5526 0.0785 0.0045 0.6849

Comparing GRAD-Pred with GRAD-Pred-R and GRAD-
Pred-G is critical to show that protecting both attributes
simultaneously provides a significant benefit. On the Diabetes
dataset, we see the model increase its discrimination with
respect to gender when only race is protected. Similarly, when
we protect gender, discrimination with respect to race increases.
Explicitly protecting both is the only safe way to reduce
discrimination on both.

The model shifting to leverage other protected features
is not surprising. In this case, race and gender are not
correlated features, so penalizing the use of one does not
directly penalize the other. When we penalize a feature which
provides information, the model must attempt to recover
discriminative information in other (potentially non-linear)
forms from the other features. Since the other protected attribute
is not correlated, the model takes no penalty when it increases
its use of that attribute. Thus the importance and utility of
GRAD to protect both simultaneously is established.

We also note that the penalty for protecting multiple
attributes is not necessarily higher than protecting a single
attribute. For the auto-encoding approach, GRAD-Auto obtains
nearly identical accuracy on the Diabetes corpus as just
NN-Auto, but with a considerably better Delta score and
reduced discrimination. If we needed a general purpose feature
representation to use for multiple tasks, the cost in this scenario
was minimal.

C. Robustness to λ

We have discused so far that a benefit of the GRAD approach
is a simplicity in application due to the having only one
hyper-parameter λ. We now show that this value λ is largely
robust to the value used. In Figure 2 we plot the Accuracy,
Discrimination, and Consistency as a function of λ for values
in the range [1, 2000].

The largest variation comes from the German dataset, though
Discrimination and Accuracy are have less variation for λ ≥
50. The Consistency score instead has some variability. This
variation is not entirely unexpected given the small size of the
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Fig. 2. Plots show the performance of GRAD-Pred as a function of λ on the x-axis (log scale). The y-axis shows Accuracy, Consistency (higher is better) and
Discrimination (lower is better). A dashed vertical black line shows the value λ = 100 used in all experiments. Above each plot is the dataset used. All plots
share the same legend.

German dataset, which contains only n = 1000 samples total.
This is an un-ideal use case for neural networks in general
which have historically performed best when an abundance of
data is available.

The Adult and Health datasets are more representative of
the GRAD approach’s normal behavior. On the Adult dataset,
we see results stabilize after λ ≥ 10. The Health dataset
looks flat through the entire plot. This is not in fact the case,
but the variation is on the order of 10−3, making it visually
indiscernible.

GRAD’s performance on the Diabetes dataset is also
consistent, though has a slight change as λ increases. For
one large range λ ∈ [1, 20], the Accuracy of GRAD-Pred is
slightly higher at ≈ 62%, but Consistency somewhat lower
at ≈ 0.70. The model then becomes progressively fairer and
stabilizing at λ ∈ [50, 2000] (which contains our default value
of λ = 100) with an increased Consistency of ≈ 0.75, but
slightly decreased accuracy of ≈ 58%. This is all despite
negligible impacts to the Discrimination metric.

We believe this example highlights the importance of using
both Discrimination and Consistency in evaluating model
fairness. The GRAD approach penalizes any ability to predict
the protected attribute ap. In this case there was still some
sub-population discrimination with respect to ap when λ ≤ 20.
If one looked only at Discrimination, one may erroneously
conclude that a smaller value of λ was better due to comparable
Discrimination but improved Accuracy.

VI. DISCUSSION

We believe we have shown GRAD is competitive with
prior methods in all metrics of interest: Accuracy, Delta,
Discrimination, and Consistency. It is not uniformly superior
to current algorithms for building fair classifiers, however
comparison has been hindered due to incomplete reporting.

The GRAD approach does have the novel benefit that it can
be applied to any currently used neural network, and requires
no additional hyper-parameters in practice. Approaches like
LFR, VFAE, and ALFR all constrain the user to a particular
network style and type, which may not be appropriate for any
particular problem. In contrast, GRAD is completely agnostic
to network architecture and could be immediately used with

CNNs and RNNs as well. As neural networks are applied
to larger and more diverse problems, we believe GRAD will
be faster to apply (since it does not require significant new
hyper-parameters) and easier to apply (since it does not force
the user into a particular architecture type).

A. Task Flexibility and Specificity

Another item of importance, as mentioned in section II, is
the choice between an approach’s task specificity and flexibility.
GRAD-Auto allows us to satisfy flexibility, and GRAD-Pred
specificity. This allows us to make a trade-off that others can
not perform. We can see the value in this from a quantitative
perspective in Table I, where GRAD-Pred has improved Delta,
Discrimination, and Consistency scores compared to GRAD-
Auto on the German and Adult datasets.

LFR and VFAE are task flexible: they learn a single
representation that can be shared and potentially used for
multiple predictive tasks. Our results clearly show that despite
lesser performance, GRAD-Auto is still competitive with LFR
and VFAE, though there is no definitive “best” approach by
these metrics. However, if greater accuracy is needed — using
LFR or VFAE leaves no options but to re-optimize the hidden
representation and bias its hyper parameters toward a task-
specific goal. In actuality, this is how their training was done [4],
where GRAD-Auto had no hyper parameters tuned toward the
Delta, Discrimination, or Consistency metrics. In this regard
GRAD-Auto is better attuned to this flexibility scenario than
these prior approaches.

In regards to the auto-encoding approach, we draw the
reader’s attention to the fact that GRAD-Auto’s discrimination
is usually reduced dramatically by switching to GRAD-Pred,
yet is in-line with VFA and LFR’s Discrimination scores as
well. We hypothesize that this may be an intrinsic weakness
of the auto-encoding approach, as the auto-encoder must learn
to re-produce multiple features, any number of which may
be correlated with ap. This increases the network’s incentive
to retain the feature as its value grows with the number of
correlated variables.



B. Protecting Multiple Attributes

Protecting multiple attributes simultaneously is an important
problem for future consideration, simply because there are
multiple attributes that are common place and must be protected
for ethical or legal reasons (such as race, gender, age, religious
identity, etc.) [1]. A naive approach to embed multiple attribute
protection within algorithms that are designed to protect only
a single attribute is to create a new dummy attribute that rep-
resents every possible combination of the protected attributes’
values. However this creates a combinatorial explosion in the
state space, and does not allow for protecting attributes that
might be continuous in nature (such as age). As such we feel it
is critical that we discuss, as a community, how we will begin
to evaluate the effectiveness of our methods for protecting
multiple attributes simultaneously. While one could argue that
many prior works could be “easily extended” to handle this case,
it is not a forgone conclusion that they will work well. More
importantly, we need some agreed upon method of determining
effectiveness at multi-attribute protection.

We have evaluated GRAD using multiple protected attributes
on the Diabetes dataset, which has two features that one
typically desires to protect: race and gender. This shows
GRAD’s capability and the ease with which it can be applied,
but does not sufficiently cover the space of possible scenarios.
There could be many more attributes to protect, of varying
combinations of discrete and continuous natures. One option
is to simply collect more datasets and define all attributes
that are worthy of protection. At first glance this appears to
immediately solve the dilemma by evaluating with respect to a
(hopefully) representative set of datasets and attributes in need
of protection.

However, as we consider future algorithms for the multiple-
attribute protection task, it may be that different algorithms are
impacted by differing factors in non-trivial ways that require
further contemplation. We argue that two in particular are of
immediate consequence to future work and impact each other:
• There may be a large number Z of attributes to protect.

Different methods may do best for small-to-large values
of Z, and so it is likely that evaluating over a range of
2 ≤ Z ′ ≤ Z values is necessary.

• The correlations between two different protected attributes
api and apj may impact performance. This could over-
regularize the model through additive effects, or cause
other non-correlated attributes to be ignored.

The need to test many sub-sets of protected features to
evaluate a range Z ′ ∈ [2, Z] creates a combinatorial explosion
of possible sub-sets of attributes to look at. Which sub-
pairs of attributes to look at may have dramatically different
results depending on the aforementioned correlation issue. For
example, if api and apj were highly correlated, we might see
that protecting one implicitly protects the other, resulting in
no net-benefit from protecting both simultaneously. This is the
behavior we would expect from GRAD.

When explicitly protecting multiple highly correlated at-
tributes, we may see the cumulative impact result in an over-

regularization of the problem. We will use GRAD’s behavior
as an example to illustrate the possible effects. Consider the
hypothetical situation where ap1 , ap2 , · · · , apK which are all
highly correlated with each other. The contributions of each of
the K protected attributes would have similar values for the
gradient, meaning the final gradient would have its magnitude
increased by a factor of K. This could result in destabilizing
the training of the network, as the contribution of the Attribute
branch to the Feature Extraction branch would overshadow
that of the Target branch.

This correlation problem makes the sub-set selection and
evaluation more challenging than a standard combinatorial
problem. Evaluation would ideally take into account the
correlation of attributes to different degrees (uncorrelated, mild,
and strongly correlated) to elucidate any potential weakness
in each approach. Simultaneously, combinations of varying
degrees of correlation are equally valid and likely to occur in
practice. This does not begin to consider potentially non-linear
interactions between a larger set of protected attributes.

These are all issues we have not yet seen discussed with
regards to the application of fairness imbued algorithms in
practice. As such we believe determining how to evaluate
multi-attribute protection is an important research item on its
own for future work.

VII. CONCLUSIONS

We have introduced GRAD, an approach for building fair
neural networks that can be used to augment any network
architecture. GRAD does not mandate the auto-encoding
approach of prior work or additional, cumbersome hyper-
parameters. GRAD is competitive with prior work, and often
delivers superior fairness through low discrimination.

The GRAD approach of appending an extra output branch
with reversed gradients can be used to augment any arbitrary
neural network. This includes both auto-encoder networks and
classification/regression networks, which allows GRAD to be
used when either flexibility (in the former case) or specificity
(in the latter) is desired. This simplicity of implementation —
in terms of both architecture and paucity of hyper-parameters
— lowers the cost to the practitioner. As such we expect it
will be useful for increasing the quantity of fairness-seeking
solutions in the world.

Finally, we believe that protecting multiple features concur-
rently has been insufficiently addressed in the prior literature
despite the prevalence of this requirement in the real world.
We make a contribution towards redressing this imbalance by
expressly demonstrating the protection of multiple attributes
simultaneously and including significant discussion on the
issue.
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