
Barrage of Random Transforms for Adversarially Robust Defense

Edward Raff1,2,4 Jared Sylvester1,2,4 Steven Forsyth3 Mark McLean1

1Laboratory for Physical Sciences 2Booz Allen Hamilton 3nvidia 4u.m.b.c.

Abstract

Defenses against adversarial examples, when using
the ImageNet dataset, are historically easy to defeat.
The common understanding is that a combination of
simple image transformations and other various de-
fenses are insufficient to provide the necessary protec-
tion when the obfuscated gradient is taken into account.
In this paper, we explore the idea of stochastically com-
bining a large number of individually weak defenses into
a single barrage of randomized transformations to build
a strong defense against adversarial attacks. We show
that, even after accounting for obfuscated gradients, the
Barrage of Random Transforms (BaRT) is a resilient
defense against even the most difficult attacks, such as
PGD. BaRT achieves up to a 24× improvement in accu-
racy compared to previous work, and has even extended
effectiveness out to a previously untested maximum ad-
versarial perturbation of ε = 32.

1. Introduction

Adversarial machine learning has been a research
area for over a decade [1], but it has recently received
increased focus and attention from the larger commu-
nity. This is largely due to the success of modern deep
learning techniques within the realm of computer vision
tasks and the surprising ease with which such systems
are fooled into giving incorrect decisions [2]. In particu-
lar, there are concerns about the safety of self-driving
cars, as they could be fooled into misreading stop signs
as speed limits, and other possible nefarious actions [3].

Consider an adversary A whom, given some vic-
tim model f(·), wants to alter x̃ = A(x) such that
f(x) 6= f(A(x)). Many works have attempted to find
a transform t(·) that can be applied to an image x to
yield a new image x̂ = t(x) such that f(x) = f(t(A(x))).
If it were possible to find such a defensive transform t(·)
it would allow us a simple and convenient way to cir-
cumvent the adversarial problem. This is particularly
alluring for computer vision, since there exists a rich

literature of computer vision transformations to pull
from. Athalye, Carlini, and Wagner [4] has shown that
the many attempts to find such a defensive transforma-
tion t(·) that defeats adversarial attacks have all failed,
due to a problem they term obfuscated gradients. More
broadly, every defense we are aware of that has under-
gone thorough evaluation has failed to produce any level
of protection for ImageNet[5], as exemplified in the Ro-
bustML catalog where all ImageNet results are reduced
to ≤ 0.1% accuracy.1 In contrast, we present a new,
state-of-the-art defense for ImageNet that pays some
cost to accuracy when not under attack, but achieves
a Top-5 accuracy of up to 57.1% when under attack.
These attacks are carried out by the strongest adver-
sary we could construct, which is significantly stronger
than those used in similar work in key respects.

In our work, we instead look not for a single transfor-
mation t(·), but propose to build a collection of many
different transforms t1,...,n from which we will randomly
select a subset to apply to each image at both training
and testing time. The individual transforms will be
randomly parameterized as will the particular subset
chosen and the order in which they are applied. By
creating a barrage of random transformations, we show
that such an ensemble defense can provide tangible ben-
efits against attack, even after taking into account all of
the methods by which obfuscated gradients can mislead
us into using a broken defense [4].

Overall we provide the following contributions:
• A new, state-of-the-art defense on ImageNet, that
fully accounts for the obfuscated gradients issue.

• Results that show ensembling weak defenses can
create a strong defense, provided they are combined
in a randomized fashion and the population of
defenses is large. Prior work had conjectured that
this was not the case [6].

BaRT is inspired by and builds upon a number of
prior works that have used singular transformations
to try to defend against attacks. We will review work
related to our approach in section 2 and detail both the

1https://www.robust-ml.org/

BaRT strategy and it’s constituent transformations in
section 3, as well as the threat model of our adversary in
section 4. While heuristic in nature, we find that after
accounting for our strongest adversary we obtain state-
of-the-art robustness against attack on the ImageNet
dataset, which we show in section 5.

2. Related Work

While work on adversarial attacks against machine
learning models has existed for over a decade, recent
work that showed their success against neural net-
works [7, 8] has spawned increased motivation and at-
tention to this problem. There were some who thought
this concern was over stated, and that the number of
variations in position, lighting, angle, and other factors
that would occur in the real world would render ad-
versarial attacks a non-issue for physical systems [9].
However, it was later shown that these difficulties could
be circumvented making it possible for adversarial ex-
amples to be constructed [10, 11].

Still, the intuition that adjustments in angle, posi-
tion, or other kinds of visual transformations of some
object could defeat an adversary by somehow filtering
or removing the adversary’s perturbations was strong
and alluring. As such, many papers have been presented
that attempt to defeat adversaries using some kind of
image pre-processing before classification (e.g., [12–14]).
As far as we are aware, these types of defenses have
all been defeated in the white-box threat model, either
by correctly incorporating the defense into the adver-
sary’s search procedure [2], or by properly accounting
for obfuscated gradients [4]. Obfuscated gradients oc-
cur when the defense has, intentionally or not, masked
information about the gradient making it unreliable (or
non-existent) for the adversary to use. These can occur
in a number of ways, but all of which have proposed
workarounds to obtain a suitable approximate gradient
for the adversary to use [4]. In this work, we use only
techniques which have already been defeated to build
our defense. This way we can leverage known solutions
to the obfuscated gradient and thus fully account for
the problem and ensure our adversary’s attack has full
knowledge of the defense.

Few approaches have been able to scale up to Im-
ageNet’s size, and we find most works that have at-
tempted to defend it against attack have been based on
transformations or denoising. Prakash, Moran, Garber,
et al. [15] claimed 81% accuracy under attack and Liao,
Liang, Dong, et al. [16] 75%, but both were reduced to
0% under just ε = 4 when obfuscated gradients were ac-
counted for [17]. Xie, Zhang, Yuille, et al. [18] claimed
86% accuracy and Guo, Rana, Cissé, et al. [13] 75%, but
these were later also reduced to 0% accuracy[4]. Even

different approaches with more modest claims were later
shown to be deficient, such as Kannan, Kurakin, and
Goodfellow [19] who initially reported 27.9% accuracy
but which was later demonstrated to be 0.1% [20].

Others before us have looked at building a multi-
component defense, but prior work has reached the
conclusion that a combined defense is no stronger than
any of its constituent members [6]. In this paper we
demonstrate that this is not necessarily true. Prior
attempts at ensembling defenses have all combined their
constituents in a fixed strategy, which has failed to be
useful. In contrast, we demonstrate that a stochastic
combination of weak defenses is effective.

A number of recent works have looked at develop-
ing provably secure training procedures for deep learn-
ing [21–23]. We believe that in the long term this is the
most encouraging and desirable path toward defending
against adversarial attacks. However, these methods
are not yet usable for large datasets. The most recent
work in this area has been “scaling up” to cifar-10 [24],
which is orders of magnitude smaller than ImageNet.

The state-of-the-art defense that has been repeatedly
found to be effective is Adversarial Training, which in-
volves augmenting the training data with adversarially
crafted examples generated as the training progresses [8].
Madry, Makelov, Schmidt, et al. [25] used adversarial
training on the cifar dataset, which still has the best
empirical robustness to attack [24] and has been repeat-
edly validated as effective and capable of fully defending
against the best known adversaries under the white-
box threat model [4]. Kurakin, Goodfellow, and Bengio
[26] attempted to scale adversarial training up to the
ImageNet dataset, which they found especially diffi-
cult. As far as we are aware, their work provides the
best uncontested defense against adversarial attack on
ImageNet. Against an adversary operating in the L∞
distance, they obtain Top-1 and Top-5 accuracy of 1.5%
and 5.5% for Top-1 and Top-5 respectively for a max
perturbation of ε = 16. We will show that our defense
outperforms adversarial training across all ε ∈ [2, 16],
and even continues to provide a robust defense up to
ε = 32. We are not aware of any prior work which has
considered an L∞ adversary given this wide of a range.

3. A Barrage of Random Transforms

Given the research that has been performed over the
past year, it is clear that a single transformation of
the input image is not sufficient to produce a reliable
defense. We take the perspective that given an omnipo-
tent adversary, randomness is one way to construct a
decision process that the adversary can not trivially cir-
cumvent. The question then becomes: is there a way to
randomly pre-process images before they are classified

by a CNN, such that accuracy is not obliterated and the
adversary is unable to effectively operate?

Since we are working on images, we can make use of
a plethora of pre-existing image transformation and pre-
processing steps that have been developed by the com-
puter vision community over the past several decades.
We leverage these to create 10 groups G1,...,10 of trans-
formations. Each group Gj will have some number
of transforms t(·) contained within that group. We
used a total of n = 25 different transforms t1,...,25,
and denote the set of all transforms T =

⋃25
i=1 ti, and

∀j,Gj ⊂ T , with each group of transforms having no
overlap (Gj ∩Gk = ∅ for j 6= k).

Each transform ti(·) will have some parameters pi
that alter the behavior of the transform, and so by
randomly selecting the values of p we can can have
ti(x|pi) produce many different outputs, introducing
a stochastic component. This alone is not new, but
we also have a collection of n different transforms to
choose from. To further maximize the randomness, we
select an ordering, or “permutation,” π of k transforms
to apply. The ordering π will change every time we
attempt to use a model f(·), with the goal being that
f(x) = f(tπ(1)(tπ(2)(. . . (tπ(k)(A(x)))))).

The intuition is that by randomly selecting k out of n
transforms, where each transform is itself randomized,
and applying them in a random order, we create a
defense that the adversary A can not easily defeat.
We focused on this randomness on top of randomness
because it provides a mechanism that the adversary can
not easily deal with, even if they have perfect knowledge
of all transformations ti and the parameters pi that
alter their behavior. The space of possible actions is too
large to find a single alteration x̃ = A(x) such that the
attacker will successfully induce an error by the model
for all permutations π and parameterizations pπ(...).

The transforms we use are listed below. There are
five singleton-groups (a group that has only one trans-
form member, |Gi| = 1). When a group has more than
one constituent transform, we randomly select a trans-
form from the group to act as the group’s representa-
tive, selecting a new representative on every application.
This is to prevent the choice of multiple transformations
which all have very similar effects from being applied
at the same time, thereby increasing the diversity of
changes made to each input.

We emphasize that for every individual transform we
evaluate in this work, we have independently tested the
transform and achieved 100% evasion success against
it using the attack methodology outlined in subsec-
tion 4.1. As such, we know that all of these defenses are
insufficient in isolation. Thus it is their stochastic com-
bination that makes them significantly stronger than

any constituent member. This is counter to previous
conclusions that ensembling defenses are not effective
and only as strong as the strongest individual defense
in the ensemble [6]. The critical difference between our
own and prior ensembling defense work is is the num-
ber of defenses (25 weak defenses, compared to ≤ 3 for
most prior work), and the use of randomness to select
subsets of defenses in random orderings.

We employ 25 transforms in total, and so only briefly
describe the larger groups here. Further explanation,
and Python code, are provided in the appendix.

Color Precision Reduction Reducing bit-resolu-
tion of color was originally proposed as a defense by
Xu, Evans, and Qi [27] and later reduced to 0% effec-
tiveness [4]. It works by simply reducing the number of
bits used to represent the color space of an image, and
was tested down to using just 1 bit of color. We incor-
porate this approach, and make the transform random
in two ways. First, the number of colors will be reduced
to a value selected from U [8, 200]. Second, with 50%
probability we choose between: 1) using the same num-
ber of colors for each channel, or 2) selecting a different
random number of colors to be used by each channel.

JPEG Noise Using lossy JPEG compression to intro-
duce artifacts was introduced by Kurakin, Goodfellow,
and Bengio [10]. Their work looked at how different
values of the JPEG compression level (a range from 1
to 100) reduced the impact of adversarial attacks for
different values of ε ≤ 16. However, it was subsequently
defeated, having 0% effectiveness [4]. When using this
approach, we randomize it by selecting the compression
level from U [55, 95].

Swirl We introduce a simple defense which is to apply
a weak swirl to the image, rotating the pixels around
a randomly selected point in the image. The radius
of intensity is randomly selected from U [10, 200], and
strength from U [0.1, 2.0].

Noise Injection In early work Tabacof and Valle
[28] looked at the impact of addition Gaussian noise
on adversarial attacks. We extend this by randomly
selecting from Gaussian, Poisson, Salt, Pepper, Salt &
Pepper, and Speckle noise to be inserted. With a 50%
chance we will either: 1) apply the same noise to every
channel, or 2) apply a randomly selected noise type to
each channel independently.

FFT Perturbation We introduce a defense built
around perturbing the 2D FFT of each channel of the

input image separately. In the frequency domain of the
image, we scale all coefficients by a value sampled from
U [0.98, 1.02] (used for all channels). Then for each chan-
nel, we randomly choose between 1) zeroing out random
coefficients of the FFT, or 2) zeroing out the lowest
frequency coefficients of the FFT. The proportion of
coefficients that will be set to zero is a random value
selected from U [0.0, 0.95]. After altering the coefficients
in the frequency domain we return a new, modified
image in the spatial domain.

Zoom Group We consider two transforms that have
the effect of zooming into the image. To prevent “over
zooming” into the image, they are grouped and only one
is selected from the group at each step. A simple zoom
into a random portion of the image is done, similar to
prior work [13], as well as a content-aware zoom based
on seam carving [29].

Color Space Group We include four transforms
that operate by altering the channels of the image by
adding a random constant value, but provide larger im-
pact by first converting the image from RGB to a differ-
ent color space, and then converting back to RGB after
modification. While a more difficult approach would be
to allow every pixel in every color coordinate to receive
a different value, we intentionally choose the simpler
constant value to aid our adversary. This approach is
applied to the HSV, XYZ, LAB, and YUV color spaces
as the four transform members of this group.

Contrast Group We consider three different types
of histogram equalization. Because each one attempts
to re-scale and redistribute the values of the histogram
of an image to broaden the covered range, they do not
make sense to apply in a sequential manner. We use a
simple version of Histogram Equalization, an adaptive
variant called clahe [30], and an approach known as
“contrast-stretching.”

Grey Scale Group We as humans are usually able
to recognize most objects from grey scale imagery, and
as such, include conversion to grey scale as one of our
defense techniques. For this reason we perform grey-
scale transformation four different ways which can be
applied selectively to different color channels.

Denoising Group The final group we consider is a
number of classical denoising operations and transfor-
mations. We group them to avoid over-zealous appli-
cation that can result in images which appear overly
blurry and become difficult to interpret. This includes

a Gaussian blur, median, mean, and mean-bilateral [31]
filtering, Chambolle and wavelet [32] denoising, and non-
local mean denoisng. Prior works have used the median
filter [12], wavelet [15, 17], and non-local mean [27] as
defenses, but all have since been defeated.

4. Methodology

Given the set of transformations outlined in section 3,
we will use a ResNet50 model as our base architecture
for experimentation. In particular, we will start with a
pre-trained ResNet50 model, and perform an additional
100 epochs of training on ImageNet using Adam[33]. For
each dataset in the batch, we randomly pick k ∼ U [0, 5]
transformations to apply to each image, so that the
model is familiar with the transformations we apply
at test time. Following Biggio, Fumera, and Roli [34],
we will now fully state the threat model that we will
operate in.

Once we have a trained model, our adversary will
attack it in three ways: 1), reduce the Top-1 accuracy
(any output besides the correct class is a success for the
attacker); 2) reduce the Top-5 accuracy (any output is
a success for the attacker provided the correct class is
ranked sixth or lower), and; 3) increase the targeted
success rate. In the first two conditions the attacker can
trick the model into any incorrect classification. In the
final condition, the attacker has a specific, randomly
selected class that it must induce the model into out-
putting. All of these attacks will be performed on the
standard ImageNet validation set.

Our adversary’s capability will include making modi-
fications to any input feature of the test data under the
L∞ metric, for which the adversary will attempt to mod-
ify the input x to a new input x̂ such that ‖x− x̂‖∞ < ε.
In our experiments, we will test a range of ε ∈ [2, 32].

We will operate in the white-box scenario, and as-
sume that our adversary has full and complete knowl-
edge of our training data, architecture, weights, and
defensive transforms. To perform the attacks, we will
use the Fast Gradient Sign Method (FGSM) [8] because
it is a common baseline. More importantly, we will also
use Projected Gradient Descent (PGD) [26], which is
also targeted toward the L∞ metric and is currently the
strongest known attack for this metric. PGD has been
conjectured to be a near-optimal first-order attack [25].
We use the FoolBox library for the implementation of
these attacks [35].

To further ensure the attacker’s strength, we follow
recommendations from Demontis, Melis, Pintor, et al.
[36], and attempt to optimize for the adversary in the
L∞ ball with maximum confidence, rather than min-
imum distance. This includes making sure that the
PGD attack runs through all optimization steps, even

3 2 |P|
22

4

Inputs

16
22

4

22
22

4

32 45 64 3

≈ t(x|p)

1

Figure 1: Diagram of BPDA network architecture. Input is of dimension 3+2+ |P (t)|, first three dimensions are the
RGB channels, second two are the CoordConv channels, and the last set corresponds to the random parameters that
affect the transform t(·)’s output. Arrows that connect in the diagram indicate concatenation, yellow is convolution
(number of filters below) followed by batch-normalization, and red is the ReLU activation

if the attack appears to have been successful at an ear-
lier iteration. By default all experiments will perform
PGD with 40 attack iterations, with stronger attacks
in the appendix. Below we will further detail all the
steps we take to implement the adversary’s attack, so
that we fully account for the gradient obfuscation and
other issues that have thwarted previous defenses [2, 4].

4.1. Making A Strong Adversary

To maximize the strength of our attacker, we must
first resolve two issues. The first is that our transfor-
mation process is randomized, which means we can not
take the gradient from a single instance of the attack,
as the next realization of a transformed image will have
a differently parameterized transform. To remedy this
situation, we use the Expectation over Transformation
(EoT) [11]. The idea of EoT is to perform the transfor-
mation multiple times, and take the average gradient
over several runs. When we use iterative attacks like
PGD, this means for every iteration of the attack we
will take the average of several transforms at that step
in the attack.

The second issue we have is that not all of our trans-
formations are differentiable. The solution to this prob-
lem was proposed by Athalye, Carlini, and Wagner [4],
and is called Backward Pass Differentiable Approxima-
tion (BPDA). The idea is simple: when a transform
t(·) is not itself differentiable, use a neural network to
learn a function ft(·) that approximates the transform.
Since it is implemented with a neural network, ft(·)
is differentiable, and so we can use ∇ft(·) to obtain a
gradient that is useful for the adversary as an approxi-
mation to ∇t(·). This approach is effective, and using
a naive identity function ft(x) = x is often sufficient
to defeat many attacks. Indeed, it is enough to defeat
most of our transforms individually. However, we learn
a small CNN to approximate this gradient to maximize
the adversary’s advantage.

We also recognize that while we have a repertoire of
transforms that are selected from at random, each trans-
form t itself is randomized as well. Denoting the set of
parameters of a transform t as P (t), the transform is de-

terministic given a specific realization p ∼ P (t) of these
transforms. To learn our model ft(·), we will create an
input that has 5 + |P (t)| channels, and is the same size
as the image to be learned. The first three channels will
be the RGB channels of the original image. The next
two channels will be the CoordConv values proposed
by Liu, Lehman, Molino, et al. [37], so that our net-
works can deal with location specific transformations.
We found CoordConv necessary in our BPDA model
to effectively approximate the Swirl transform. The re-
maining |P (t)| channels will each have a constant value,
which is the value of the realized parameters p. Placing
the random values p each into their own distinct chan-
nel provides a mechanism for us to allow the network
ft(·) to learn the fully specified deterministic mapping.
Each CNN ft(·) has 6 convolutional layers, followed by
batch-normalization and then a ReLU activation. For
each layer we include a skip connection from the input,
following the DenseNet approach. (See Figure 1). We
train the network as a denoising auto-encoder, where
the target is the parameterized transform of the image
(i.e., the loss is ‖ft(x, p)− t(x|p)‖22), with 100 epochs of
training for all 25 BPDA networks. Once ft(·) is trained,
we perform BPDA by back-propagating through ft(·)
to the first 3 channels that correspond to the original
image RGB values.

Combining BPDA and EoT as we have described
above, we can defeat any of our transforms individually
100% of the time for both targeted and un-targeted
attacks. This confirms that we have implemented
these approaches appropriately, and have maximized
the strength of our adversary.

As part of our evaluation, we also wish to address
a concern raised by Madry, Makelov, Schmidt, et al.
[25], which is the computational cost of a threat model.
They argue that the strength of an adversary should be
in some way computationally constrained, in the same
manner that cryptographic problems are secure because
we assume the adversary does not have the dramatic
compute resources necessary to attack a given encryp-
tion scheme. Using 10 iterations of EoT combined with
the iterative nature of PGD (40 optimization steps)

means we must perform 400 gradient calculations per
attack, combined with the time to compute the image
transformations and back-propagate through the ad-
ditional BPDA networks. This takes about 48 hours
per experiment given a workstation with 10 CPU cores
and a Titan X GPU. We will also consider results with
40 EoT iterations — the highest we have observed in
the literature — to evaluate if an even stronger adver-
sary would be significantly more successfully, but these
experiments required 240 hours each on a DGX-1. In
total, the results presented in this paper consumed ap-
proximately 320 days on our DGX-1. We include tests
at both of these EoT scales to help confirm our attack is
robust, and simply increasing the number of iterations
of the adversary does not dramatically change results.
We also feel we are approaching a limit of reasonable
compute for an adversary to have, and would be the
largest barrier to replication if we pushed to even more
attack iterations.

4.1.1. Medoid over Transformations
We take a moment to define a new type of attack to

help ensure that we are not inadvertently engaging in
accidental obfuscation of gradients. In particular, we
note that the expectation over transformation approach
uses the mean gradient over some transformation, shown
more formally in Equation 1 where zEoT is the number of
iterations of the EoT sampling and t(i) is a deterministic
realization of the transform t (i.e., the pseudo random
number generator has been seeded with the value i to
provide a deterministic result).

∇Et(i)∼tf(t(i)(x)) ≈
1

zEoT

zEoT∑
i=1

∇f(t(i)(x)) (1)

One possible source of gradient obfuscation might be
that the mean of the distribution does not exist or is not
well defined. This notion comes from the recognition
that in our larger framework t in Equation 1 corresponds
to our entire randomized pipeline of selecting k trans-
forms from G1,...,10. Our concern by analogy is that we
could have a situation similar to the Cauchy distribu-
tion: The mean of the Cauchy distribution does not
exist; every empirical mean is equally likely. However,
one can successfully estimate the Cauchy distribution’s
position by instead using the median.

With this notion in mind, we include a new Medoid
over Transformations (MoT) estimate, in which we
use the medoid of the gradients of a sample of zMoT

transformations as our gradient estimate to perform
attacks with.

argmin
i

zMoT∑
j=1

‖∇f(t(i)(x))−∇f(t(j)(x))‖22 (2)

If we are accidentally performing gradient obfusca-
tion by instead pushing information from the mean to
the medoid — similar to the behavior of a Cauchy dis-
tribution — we would expect to see an increase in per-
formance with the MoT attack compared to the EoT.
Our results will confirm that this is not the case, as the
MoT attack performs worse than the EoT attack. How-
ever, we include the results and attack description here
to build further confidence that we have attempted to
make the strongest attack possible.

5. Results

Few people have had their defense stand up to fur-
ther testing due to a variety of issues related to ob-
fuscated gradients and failing to fully account for all
components of the defense when designing the white-
box adversary. Fewer still have been able to scale their
defensive techniques up to the ImageNet dataset. Now
that we have defined our methodology to make sure
we have accounted for both obfuscated gradients and
ensure our adversary has fully captured the defense in
their attack, we will show how we obtain new state-of-
the-art results on the ImageNet dataset, as well as the
associated costs in achieving such performance.

Kurakin, Goodfellow, and Bengio [26] provide the
strongest results on the full ImageNet dataset that we
are aware of. They do this with adversarial training,
which they noted had great difficulty scaling up to
the ImageNet corpus. At a maximum perturbation of
ε = 16, they achieved only a Top-1 accuracy of 1.5% and
a Top-5 accuracy of 5.5% when under attack by PGD.

For BaRT, we will by default assume ε = 16, the
number of transformations k = 5, and the number of
EoT runs will be 10. In our experiments we will investi-
gate changing all of the values to observe their impact
on our effectiveness against attack. We begin by show-
ing the accuracy of our methods in Table 1. Here we
can see the first immediate down side to BaRT, which
is a significant reduction in accuracy if our model is not
under attack. The off-setting benefit is the first signifi-
cant improvement in accuracy when the model is under
attack. At a cost of increased runtime, it is possible
to create multiple inferences of an input by applying
the transform t(·) multiple times, and then classifying
each differently transformed version of the image. This
creates an ensemble effect, and removes any loss in ac-
curacy due to BaRT’s application. Due to space, details
on ensembling BaRT are left to Appendix E.

5.1. Experiments

The immediate product of our work is that the BaRT
strategy provides a 9.3–24 times improvement in accu-
racy on ImageNet compared to prior state of the art.

Table 1: Accuracy (%) of baseline prior work on ad-
versarial training [26] and BaRT. ‘Clean Images’ is the
results of classifying non-attacked images without any
transforms; ‘Attacked’ shows results when using PGD
with ε = 16.

Clean Images Attacked

Model Top-1 Top-5 Top-1 Top-5

Inception v3 78 94 0.7 4.4
Inception v3 w/Adv.Train 78 94 1.5 5.5
ResNet50 76 93 0.0 0.0
ResNet50-BaRT, k = 5 65 85 16 51
ResNet50-BaRT, k = 10 65 85 36 57

2 4 8 16 22 32

0

0.2

0.4

0.6

Max Adversary Distance ε

A
cc
ur
ac
y

BaRT Top-1 EoT=10 BaRT Top-5 EoT=10
BaRT Top-1 EoT=40 BaRT Top-5 EoT=40
Adv. Train Top-1 Adv. Train Top-5

Figure 2: Accuracy of model under attack by PGD for
varying adversarial distances ε with EoT steps={10,40}.

We now further investigate the differing parameters of
our defense. First we look at the larger range of ε, the
bound on the adversary’s freedom to alter the input.
In Figure 2 we show accuracy under PGD attack as ε
varies from 2 to 32. We note that ε = 16 is the largest
we have observed in any prior work, and is considered
a powerful adversary. We are the first to test ε = 32,
and still show non-trivial robustness to attack.

In these results we see that BaRT dominates adver-
sarial training across all values of ε. We also see that
adversarial training degrades quickly as ε moves from
just 2 to 4. In contrast BaRT Top-1 and Top-5 accu-
racy when attacked with ε = 32 is still better than the
results with adversarial training and ε = 4. For ε > 2,
BaRT also shows Top-1 accuracy higher than adversar-
ial training’s Top-5 accuracy.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Number of transforms selected

A
cc
ur
ac
y

No attack Top-1 No attack Top-5
PGD Top-1 PGD Top-5

Figure 3: Accuracy of model when varying the number
of transforms used, both when not under attack and
when being attacked by PGD.

These results also demonstrate that while increasing
the number of EoT steps does increase the adversary’s
success rate, the difference is not large. Using 40 steps
already requires a level of compute not reasonable for
most institutions, and gives us confidence that other
attempts to simply throw even more compute to the
adversary will be nonviable. This is before we consider
that it is relatively easy to write these transformations,
and we could add even more transformations to the
pipeline to further impede the adversary’s compute
requirements and reduce their success rate. While we
do not have the resources to test exhaustively, we show
in Appendix F that using even 520 PGD steps shows
no significant change in the attacker’s success rate.

Next we investigate the number of transforms applied.
For these results, we remind the reader that BaRT was
only trained with up to k = 5 transforms applied to the
training data. In Figure 3 we plot the Top-1 and Top-5
accuracy of BaRT (under attack and on clean images)
as a function of the number of transforms k selected at
test time. Our initial expectation was that we would
see the best performance (i.e., greatest accuracy under
attack) when k = n/2, as this would maximize the
number of combinatorial paths

(
n
k

)
. However, this was

not the case.
Instead we see that every transformation ti(·) we ap-

ply produces some associated costs and benefits. The
benefit is that increasing k → n improves our perfor-
mance when under attack. A slight dip occurs after

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Number of transforms selected

A
tt
ac
ke
r
Su

cc
es
s

Targetted FGSM
Targetted PGD

Figure 4: Attacker success rate against BaRT model
when varying the number of transforms used, for both
FGSM and PGD attacks with ε = 16.

k = 5 transformations are applied, which we expect is
related to using k ≤ 5 during training. One can also ob-
serve a steady decrease in the accuracy on non-attacked,
clean images as k increases, which happen to almost
intersect at k = 10. Adding more transformations also
has an impact on run-time, but calculating the trans-
formations is fast relative to the cost of needing a GPU
for CNN inference, and is approximately three orders
of magnitude faster than running the attacks.

Overall this validates that an ensemble of weak de-
fenses can form a single strong defense, provided that
the ensemble is applied in a random fashion. We also
see that maximizing the combinatorial search space is
not a dominating strategy, since we see maximal ad-
versarial robustness at k = 10 instead of k = 5. This
tells us that the amount of transformation applied to
the image is also an important component of defeating
the adversary, as this is maximized at k = 10. Cumula-
tively, we could argue that selecting the value of k to
use in practice should be a function of the likelihood
of being under attack. If a model is continuously un-
der attack or needs maximal worst-case performance,
one should choose k = 10 because the non-attacked
accuracy is not meaningful when under attack.

We also explore the impact on targeted adversarial
attacks in Figure 4, where we look at the attacker’s suc-
cess rate as a function of k. Here we can see that when
no transformations are present, PGD attack achieves
100% success rate against the model, but quickly de-
grades as transformations are added — reaching 0.0%
success at k = 10 transformations. We note that ad-
ditional runs may produce values near zero instead of

2 4 8 16 22 32

0

0.2

0.4

0.6

Max Adversary Distance ε

A
cc
ur
ac
y

BaRT Top-1 EoT=40 BaRT Top-5 EoT=40
BaRT Top-1 MoT=40 BaRT Top-5 MoT=40

Figure 5: Accuracy of model under attack by EoT and
MoT versions of PGD for varying adversarial distances
ε and EoT steps=40.

at zero, but it suffices to show that the ability for the
adversary to perform targeted attacks can be almost
completely impeded by our BaRT defense.

Lastly, in subsubsection 4.1.1 we considered the possi-
bility that we might be engaging in obfuscated gradients
by moving information to the medoid of the distribu-
tion. We developed a new Medoid over Transformation
attack to test this hypothesis. The results are shown in
Figure 5. While MoT does produce adversarial exam-
ples, it has uniformly worse performance compared to
using the mean gradient. As such we further conclude
that we have not relied on obfuscated gradients, and
that our defense is effective.

6. Conclusion

We have introduced BaRT, a strategy for defending
image classifiers against attack by randomly selecting
a few transforms from a large pool of stochastic trans-
formations, and apply each in a random order before
processing the image. This scales to datasets like Ima-
geNet, and provides state-of-the-art results when under
attack even after accounting for all known obfuscated
gradients. While heuristic in nature, our results pro-
vide evidence that a strong defense can be made from
many weaker ones, and indicates strategic applications
of randomness may benefit future work.

Acknowledgments We would like to thank Battista
Biggio for reviewing a draft of this work and providing
insightful comments and feedback.

References

[1] B. Biggio and F. Roli, “Wild patterns: Ten years
after the rise of adversarial machine learning,”
Pattern Recognition, vol. 84, pp. 317–331, Dec.
2018. doi: 10.1016/j.patcog.2018.07.023.

[2] N. Carlini and D. Wagner, “Adversarial Examples
Are Not Easily Detected: Bypassing Ten Detec-
tion Methods,” in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security,
ser. AISec ’17, New York, NY, USA: ACM, 2017,
pp. 3–14. doi: 10.1145/3128572.3140444.

[3] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A.
Rahmati, C. Xiao, A. Prakash, T. Kohno, and D.
Song, “Robust Physical-World Attacks on Deep
Learning Models,” in Computer Vision and Pat-
tern Recognition (CVPR), 2018.

[4] A. Athalye, N. Carlini, and D. Wagner, “Obfus-
cated Gradients Give a False Sense of Security:
Circumventing Defenses to Adversarial Exam-
ples,” in International Conference on Machine
Learning (ICML), 2018.

[5] O. Russakovsky, J. Deng, H. Su, J. Krause, S.
Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

[6] W. He, J. Wei, X. Chen, N. Carlini, and D.
Song, “Adversarial Example Defenses: Ensembles
of Weak Defenses Are Not Strong,” in Proceed-
ings of the 11th USENIX Conference on Offensive
Technologies, ser. WOOT’17, Berkeley, CA, USA:
USENIX Association, 2017.

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna,
D. Erhan, I. Goodfellow, and R. Fergus, “Intrigu-
ing properties of neural networks,” in ICLR, 2014.
doi: 10.1021/ct2009208.

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Ex-
plaining and Harnessing Adversarial Examples,”
in International Conference on Learning Repre-
sentations (ICLR), 2015.

[9] J. Lu, H. Sibai, E. Fabry, and D. Forsyth, “No
Need to Worry about Adversarial Examples in
Object Detection in Autonomous Vehicles,” in
The First Workshop on Negative Results in Com-
puter Vision. CVPR 2017., 2017.

[10] A. Kurakin, I. Goodfellow, and S. Bengio, “Adver-
sarial examples in the physical world,” in ICLR
Workshop, 2017.

[11] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok,
“Synthesizing Robust Adversarial Examples,”
2017.

[12] X. Li and F. Li, “Adversarial Examples Detec-
tion in Deep Networks with Convolutional Filter
Statistics,” in 2017 IEEE International Confer-
ence on Computer Vision (ICCV), IEEE, Oct.
2017, pp. 5775–5783. doi: 10.1109/ICCV.2017.
615.

[13] C. Guo, M. Rana, M. Cissé, and L. Van Der
Maaten, “Countering Adversarial Images Using
Input Transformations,” in International Confer-
ence on Learning Representations (ICLR), 2018.

[14] P. Samangouei, M. Kabkab, and R. Chellappa,
“Defense-GAN: Protecting Classifiers Against Ad-
versarial Attacks Using Generative Models,” in
International Conference on Learning Represen-
tations (ICLR), 2018.

[15] A. Prakash, N. Moran, S. Garber, A. DiLillo, and
J. Storer, “Deflecting Adversarial Attacks with
Pixel Deflection,” in CVPR, 2018. doi: 10.1109/
CVPR.2018.00894.

[16] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J.
Zhu, “Defense against Adversarial Attacks Using
High-Level Representation Guided Denoiser,” in
CVPR, 2018.

[17] A. Athalye and N. Carlini, “On the Robustness of
the CVPR 2018 White-Box Adversarial Example
Defenses,” arXiv, 2018.

[18] C. Xie, Z. Zhang, A. L. Yuille, J. Wang, and
Z. Ren, “Mitigating Adversarial Effects Through
Randomization,” in International Conference on
Learning Representations (ICLR), 2018.

[19] H. Kannan, A. Kurakin, and I. Goodfellow, “Ad-
versarial Logit Pairing,” arXiv, 2018. doi: 10.
4103/0972-124X.94617.

[20] L. Engstrom, A. Ilyas, and A. Athalye, “Evaluat-
ing and Understanding the Robustness of Adver-
sarial Logit Pairing,” arXiv, 2018.

[21] E. Wong and Z. Kolter, “Provable Defenses
against Adversarial Examples via the Convex
Outer Adversarial Polytope,” in Proceedings of
the 35th International Conference on Machine
Learning, J. Dy and A. Krause, Eds., ser. Pro-
ceedings of Machine Learning Research, vol. 80,
Stockholmsmässan, Stockholm Sweden: PMLR,
2018, pp. 5283–5292.

[22] M. Abbasi and C. Vision, “Certified Defenses
Against Adversarial Examples,” in International
Conference on Learning Representations (ICLR),
2018.

[23] K. Dvijotham, R. Stanforth, S. Gowal, T. Mann,
and P. Kohli, “A Dual Approach to Scalable Ver-
ification of Deep Networks,” in Conference on
Uncertainty in Artificial Intelligence (UAI), 2018.

[24] E. Wong, F. Schmidt, J. H. Metzen, and J. Z.
Kolter, “Scaling provable adversarial defenses,”
ArXiv e-prints, 2018.

[25] A. Madry, A. Makelov, L. Schmidt, D. Tsipras,
and A. Vladu, “Towards Deep Learning Models
Resistant to Adversarial Attacks,” in ICLR, 2018.

[26] A. Kurakin, I. Goodfellow, and S. Bengio, “Ad-
versarial Machine Learning at Scale,” in Inter-
national Conference on Learning Representations
(ICLR), 2017.

[27] W. Xu, D. Evans, and Y. Qi, “Feature Squeez-
ing: Detecting Adversarial Examples in Deep Neu-
ral Networks,” in Proceedings 2018 Network and
Distributed System Security Symposium, Reston,
VA: Internet Society, 2018. doi: 10.14722/ndss.
2018.23198.

[28] P. Tabacof and E. Valle, “Exploring the space of
adversarial images,” in 2016 International Joint
Conference on Neural Networks (IJCNN), IEEE,
Jul. 2016, pp. 426–433. doi: 10.1109/IJCNN.
2016.7727230.

[29] S. Avidan and A. Shamir, “Seam Carving for
Content-aware Image Resizing,” in ACM SIG-
GRAPH 2007 Papers, ser. SIGGRAPH ’07, New
York, NY, USA: ACM, 2007. doi: 10 . 1145 /
1275808.1276390.

[30] K. Zuiderveld, “Contrast Limited Adaptive His-
togram Equalization,” in Graphics Gems IV, P. S.
Heckbert, Ed., San Diego, CA, USA: Academic
Press Professional, Inc., 1994, ch. Contrast L,
pp. 474–485.

[31] B. Weiss, “Fast Median and Bilateral Filtering,” in
ACM SIGGRAPH 2006 Papers, ser. SIGGRAPH
’06, New York, NY, USA: ACM, 2006, pp. 519–
526. doi: 10.1145/1179352.1141918.

[32] S. Chang, Bin Yu, and M. Vetterli, “Adaptive
wavelet thresholding for image denoising and com-
pression,” IEEE Transactions on Image Process-
ing, vol. 9, no. 9, pp. 1532–1546, 2000. doi: 10.
1109/83.862633.

[33] D. P. Kingma and J. L. Ba, “Adam: A Method for
Stochastic Optimization,” in International Con-
ference On Learning Representations, 2015.

[34] B. Biggio, G. Fumera, and F. Roli, “Security eval-
uation of pattern classifiers under attack,” IEEE
Transactions on Knowledge and Data Engineer-
ing, vol. 26, no. 4, pp. 984–996, 2014. doi: 10.
1109/TKDE.2013.57.

[35] J. Rauber, W. Brendel, and M. Bethge, “Fool-
box: A Python toolbox to benchmark the robust-
ness of machine learning models,” arXiv preprint
arXiv:1707.04131, 2017.

[36] A. Demontis, M. Melis, M. Pintor, M. Jagielski,
B. Biggio, A. Oprea, C. Nita-Rotaru, and F. Roli,
“Why Do Adversarial Attacks Transfer? Explain-
ing Transferability of Evasion and Poisoning At-
tacks,” ArXiv e-prints, pp. 26–28, 2018.

[37] R. Liu, J. Lehman, P. Molino, F. P. Such, E.
Frank, A. Sergeev, and J. Yosinski, “An Intriguing
Failing of Convolutional Neural Networks and the
CoordConv Solution,” pp. 1–24, 2018.

[38] A. Chambolle, “An Algorithm for Total Variation
Minimization and Applications,” J. Math. Imag-
ing Vis., vol. 20, no. 1-2, pp. 89–97, Jan. 2004.
doi: 10.1023/B:JMIV.0000011325.36760.1e.

[39] J. Darbon, A. Cunha, T. F. Chan, S. Osher, and
G. J. Jensen, “Fast nonlocal filtering applied to
electron cryomicroscopy,” in 2008 5th IEEE In-
ternational Symposium on Biomedical Imaging:
From Nano to Macro, IEEE, May 2008, pp. 1331–
1334. doi: 10.1109/ISBI.2008.4541250.

[40] L. I. Kuncheva and C. J. Whitaker, “Measures
of diversity in classifier ensembles and their rela-
tionship with the ensemble accuracy,” Machine
learning, vol. 51, no. 2, pp. 181–207, 2003.

[41] C. Ju, A. Bibaut, and M. van der Laan, “The
relative performance of ensemble methods with
deep convolutional neural networks for image clas-
sification,” Journal of Applied Statistics, vol. 45,
no. 15, pp. 2800–2818, 2018.

A. Checking for Vanishing and Explod-
ing Gradients

In this work, we have intentionally restricted our-
selves to a class of defenses that are currently known
to be broken against powerful adversaries, and imple-
mented the known attack methods that have succeeded
against them. This has enabled us to show that an
ensemble of weak defenses, combined with appropriate
stochastic measures, comprises a more powerful collec-
tive defense than its individual constituents.

We have spent considerable effort looking for any pos-
sible form of obfuscated gradient to ensure that we have
not succeeded through inadvertently withholding infor-
mation from the adversary. As our last check against
this issue, we look for vanishing and/or exploding gra-
dients. This is a common problem with many types of
neural networks that can cause failure to converge due
to numerical instability, and was found to be an inadver-
tent source of obfuscation in prior works [4]. In Table 2
we show statistics on the norm of the 40 gradient steps
used by PGD to attack a single image.

The values at k = 0 are shown for the ResNet50
model that comes pre-trained in pyTorch, and values
k = 1 through k = 10 are with our fine-tuned model
with one through ten transforms selected. Looking at
the mean norm of the gradient, we see that it starts out
at a value of 57.65, which looks more like an exploding
gradient and would be clipped back to the ε ball of the
PGD iteration. As k increase the mean norm decrease
to a more reasonable range of values. We see no evi-
dence for exploding or vanishing gradients that would
cause numerical instability and cause a failure for the
attacker’s optimization process. In fact, we see more

Table 2: Statistics on norm of the gradient during PGD
search. Measure over 40 PGD attack steps, and using
40 EoT steps for each gradient estimate, across 1000
images from the ImageNet validation set.

k min max mean std median

0 0.00 330.87 57.65 26.96 55.09
1 0.00 108.53 21.27 9.96 20.24
2 0.00 45.09 10.96 5.06 10.49
3 0.01 60.03 6.97 3.11 6.65
4 0.01 37.56 5.07 2.18 4.84
5 0.12 40.88 3.92 1.76 3.66
6 0.17 39.76 3.02 1.41 2.79
7 0.16 47.31 2.32 1.15 2.11
8 0.13 37.74 1.85 1.01 1.64
9 0.15 33.78 1.52 0.92 1.32
10 0.14 33.08 1.30 0.86 1.10

0 10 20 30

100

101

102

PGD Step Number

G
ra
di
en
t
N
or
m

k=0 k=1 k=3
k=5 k=7 k=10

Figure 6: The y-axis (log-scale) shows the L2 norm,
and x-axis which sequential PGD step’s gradient is
considered. Standard deviation is shown in a lighter
shaded region around each plot, for k = 0, 1, 3, 5, 7, 10
transforms being used in the defense. 40 EoT steps
where used for k ≥ 0.

unstable gradients when k = 0, before we have ever
introduced our attacks. Here we see a minimum magni-
tude of 0.0000, and a maximum of 330.87. The range
of gradient magnitude shrinks as k increases, making
the problem fundamentally more numerically stable.
This is caused largely because of the averaging of 40
gradients by the EoT process, which reduces the im-
pact of large and small magnitude outliers on the PGD
steps. Another trend is that as k increases, we see the
minimum norm of the gradient increase. This makes
intuitive sense, as larger k corresponds to a larger com-
bination of possible defensive transforms, necessitating
more work from the adversary to circumvent.

In Figure 6 we look at the norm of the gradient used
by PGD across the PGD steps. Here it is clear that
after 5 steps, the average norm stabilizes around some
value with a large standard deviations, regardless of the
value of k. As k increases, the average norm decreases
and is consistent.

B. Why BaRT Works as a Defense

The results presented demonstrate that BaRT pro-
vides an effective, though not perfect, defense against
adversarial attack. Throughout testing we believe we
have eliminated the possibility of an obfuscated gra-

Table 3: Statistics on absolute cosine similarity between
successive steps of PGD. Statistics collected from PGD
with 40 iterations and 40 EoT steps per gradient, run
over 1000 images from the ImageNet test set.

k min max mean std median

0 0.000 0.561 0.283 0.111 0.302
1 0.000 0.671 0.374 0.137 0.411
2 0.000 0.571 0.265 0.114 0.279
3 0.000 0.561 0.109 0.083 0.092
4 0.000 0.519 0.075 0.060 0.062
5 0.000 0.364 0.066 0.044 0.058
6 0.000 0.266 0.050 0.033 0.044
7 0.000 0.223 0.034 0.024 0.030
8 0.000 0.152 0.023 0.017 0.020
9 0.000 0.171 0.017 0.013 0.014
10 0.000 0.145 0.016 0.013 0.013

dient as a source of misleading positive results. The
question then becomes: why does BaRT work?

As we have explained, our intuition behind the BaRT
defense’s effectiveness is that it is not always possible for
the adversary to find a single alteration that can simul-
taneously satisfy the large number of possible transfor-
mation combinations. The search space becomes large,
and the randomized nature of a variety of transforma-
tions make it so that (hopefully) changes to support
one set of transforms fail to be effective for a different
set of transforms. Since the selection is random, the
adversary is left with few winning options.

We can empirically test this hypothesis by looking
at the gradients of successive PGD steps during the at-
tack process. If the absolute cosine similarity between
successive steps is near 1.0, it means there is a straight
path from the original starting image to one that suc-
cessfully fools the victim model. If it is zero, it means
there is no information in the gradient at all, and the
PGD attack is instead performing a type of random
search. We plot statistics of the absolute cosine similar-
ity between successive PGD steps in Table 3.

Here we can see a clear progression of behavior. For
k ≤ 2, the cosine similarity is a relatively large value
(≈ 0.3), indicating that the gradient direction between
steps is related but the path taken adjusts direction as
well. This makes sense and is part of why PGD is more
effective than FGSM: if a single direction was sufficient,
FGSM with a larger step size would be equally effective.

As k increases toward 10, we see that the mean and
max cosine similarity between successive steps begins
to decrease and approach 0. This indicates that the
PGD attack is heading in a nearly orthogonal direction
at consecutive steps. We have taken all steps to ensure

0 10 20 30

0

0.2

0.4

0.6

PGD Step Number

A
bs
ol
ut
e
C
os
in
e
Si
m
ila

ri
ty

k=0 k=1 k=3
k=5 k=7 k=10

Figure 7: The y-axis shows the absolute cosine similar-
ity, and x-axis which pair of successive PGD steps are be-
ing compared. Standard deviation is shown in a lighter
shaded region around each plot, for k = 0, 1, 3, 5, 7, 10
transforms being used in the defense. 40 EoT steps
were used for k ≥ 0.

the gradient can be back-propagated through transfor-
mations using EoT and BPDA, and that the gradients
are not vanishing or exploding. As such, this provides
empirical evidence that our hypothesis is correct: The
PGD attack is not able to make successful adversarial
examples because there is no single perturbation to the
input that can satisfy a large number of different and
randomly applied transformations to the image.

We further explore the behavior of the similarity of
PGD gradient directions comparing step-by-step gra-
dients in Figure 7. We consider the 40 PGD steps se-
quentially, and compare the cosine similarity between
just successive pairs of steps, averaged across 1000 im-
ages randomly selected from the test set. Here we can
see that when k ≤ 1, the similarity between successive
steps starts out small, and later increases as the PGD
optimization process finds a path toward successfully
fooling the model.

As k increases, we see a significant change in behav-
ior. The relation between successive PGD steps starts
out near its highest, and then tends toward zero after
a few steps of PGD. The larger k becomes, the more
depressed the similarity of adjacent gradients. Because
we have determined that the norm of the gradients is
in a numerically stable range and has not exploded or
vanished, it appears PGD is unable to find an pertur-

bation that successfully attacks the variety of possible
transformations and their combinations.

While these results do not provide proof that BaRT
will always be successful, we find them informative
to understanding the nature of how BaRT provides
improvements in detection under attack.

C. Transformation Details

In this section of the appendix we will provide further
details of all 25 transformations used in our work. For
transformations that were briefly mentioned because
they were members of a group, we will provide similar
short textual description.

More importantly, we extract the code from each
transformation used in our code base. We hope to
release the full source code in the future. Each code
snippet is extracted from a class’ def transform(self,
img) function, which takes in the image object as a
numpy array of size 224× 224× 3, where the first two
dimensions are width and height, and the last dimension
gives the red, green, and blue channels in that order.

As part of the contract of the transform method, the
return value will be a tuple of 1) the newly transformed
image, and 2) an ordered list of the randomly selected
parameter values for the transform. The purpose of
returning the parameter values is so that they can be
used when training the BPDA networks. The length of
the returned list will be the number of extra channels
|P (t)| added to the associated BPDA network, and each
channel will be filled with the value returned in the list.
When we return the parameter values in the code, we
normalize them so that they are in the range of [0, 1],
and booleans are converted to 0 and 1 exactly.

The function definitions assume a number of standard
imports for python libraries, such as numpy and scikit-
image. A number of the functions also make use of the
three helper functions for randomly sampling values
shown below:

def randUnifC(low, high, params=None):
p = np.random.uniform()
if params is not None:

params.append(p)
return (high-low)*p + low

def randUnifI(low, high, params=None):
p = np.random.uniform()
if params is not None:

params.append(p)
return round((high-low)*p + low)

def randLogUniform(low, high, base=np.exp(1)):
div = np.log(base)
return base**np.random.uniform(np.log(low)/div,

np.log(high)/div)↪→

For each transform, we will include an image from the

Figure 8: Color Precision Reduction

ImageNet validation set of an adorable kitten, followed
by examples of that transformation applied to the kitten.
We use the kitten because it is adorable.2 The original
kitten image will be the leftmost image of each trio,
and the center and right images are randomly selected
transformations of the kitten.

The distribution of parameters for each transform
were adjusted based on a small sample of 10 images from
the training set. The distributions were adjusted to the
point that, subjectively, we felt we could reliably tell
what the image was after transformation. Tuning the
distributions more rigorously may allow one to optimize
the performance of BaRT when under attack or not
under attack, but we leave that for future research.

The first five transforms do not belong to larger
groups. Since they are fully described in section 3, we
include only the related code here. For the rest of the
transforms we include both code and a more detailed
description than can be found in the main body.

C.1. Color Precision Reduction

This transformation alters images by reducing the
color depth. The number of resulting channels is chosen
from U [8, 200]. With 50% probability, we reduce all
three color channels by an equal amount, or alter each
channel independently. In the future, more advanced
color quantization algorithms could be examined.

scales = [np.asscalar(np.random.random_integers(8,
200)) for x in range(3)]↪→

multi_channel = np.random.choice(2) == 0

params = [multi_channel] + [s/200.0 for s in scales]

if multi_channel:
img = np.round(img*scales[0])/scales[0]

else:
for i in range(3):

img[:,:,i] = np.round(img[:,:,i]*scales[i]) /
scales[i]↪→

return img, params

2Some of the authors feel that a dog should have been chosen.

Figure 9: JPEG Noise

Figure 10: Swirl

C.2. JPEG Noise

In this transformation, the image is encoded at a
lower JPEG quality level — chosen from U [55, 95] —
and then re-loaded.

quality = np.asscalar(np.random.random_integers(55,
95))↪→

params = [quality/100.0]

pil_image = PIL.Image.fromarray(
(img*255.0).astype(np.uint8))↪→

f = BytesIO()
pil_image.save(f, format='jpeg', quality=quality)
jpeg_image = np.asarray(PIL.Image.open(f)

).astype(np.float32) / 255.0↪→

return jpeg_image, params

C.3. Swirl

Using the scikit-image package, each image is
“swirled” by some amount to create a “whirlpool” effect.
The angle of rotation, center of rotation, and radius of
effect are all randomized.

strength = (2.0-0.01)*np.random.random(1)[0] + 0.01
c_x = np.random.random_integers(1, 256)
c_y = np.random.random_integers(1, 256)
radius = np.random.random_integers(10, 200)

params = [strength/2.0, c_x/256.0, c_y/256.0,
radius/200.0]↪→

img = skimage.transform.swirl(img, rotation=0,
strength=strength, radius=radius, center=(c_x,
c_y))

↪→

↪→

return img, params

Figure 11: Noise Injection

C.4. Noise Injection

In this defense, random noise is applied to each image.
There is a 50% probability that the noise will be applied
to all channels, and a 50% probability that different
noise values will be added to each channel independently.
The type of noise is chosen uniformly from six varieties
implemented in scikit-image.

params = []

average of color channels, different contribution
for each channel↪→

options = ['gaussian', 'poisson', 'salt', 'pepper',
's&p', 'speckle']↪→

noise_type = np.random.choice(options, 1)[0]
params.append(options.index(noise_type)/6.0)

per_channel = np.random.choice(2) == 0
params.append(per_channel)

if per_channel:
for i in range(3):

img[:,:,i] = skimage.util.random_noise(
img[:,:,i], mode=noise_type)↪→

else:
img = skimage.util.random_noise(img,

mode=noise_type)↪→

return img, params

C.5. FFT Perturbation
r, c, _ = img.shape

#Everyone gets the same factor to avoid too many weird
artifacts↪→

point_factor = (1.02-0.98)*np.random.random((r,c)) +
0.98↪→

randomized_mask = [np.random.choice(2)==0 for x in
range(3)]↪→

keep_fraction = [(0.95-0.0)*np.random.random(1)[0] +
0.0 for x in range(3)]↪→

params = randomized_mask + keep_fraction

for i in range(3):
im_fft = fftpack.fft2(img[:,:,i])

Set r and c to be the number of rows and columns
of the array.↪→

r, c = im_fft.shape

Figure 12: FFT Perturbation

if randomized_mask[i]:
mask = np.ones(im_fft.shape[:2]) > 0
im_fft[int(r*keep_fraction[i]):

int(r*(1-keep_fraction[i]))] = 0↪→

im_fft[:, int(c*keep_fraction[i]):
int(c*(1-keep_fraction[i]))] = 0↪→

mask = ~mask
#Now things to keep = 0, things to remove = 1
mask = mask * ~(np.random.uniform(

size=im_fft.shape[:2]) <
keep_fraction[i])

↪→

↪→

#Now switch back
mask = ~mask

im_fft = np.multiply(im_fft, mask)
else:

im_fft[int(r*keep_fraction[i]):
int(r*(1-keep_fraction[i]))] = 0↪→

im_fft[:, int(c*keep_fraction[i]):
int(c*(1-keep_fraction[i]))] = 0↪→

#Now, lets perturb all the rest of the non-zero
values by a relative factor↪→

im_fft = np.multiply(im_fft, point_factor)
im_new = fftpack.ifft2(im_fft).real

#FFT inverse may no longer produce exact same
range, so clip it back↪→

im_new = np.clip(im_new, 0, 1)

img[:,:,i] = im_new

return img, params

C.6. Zoom Group

C.6.1. Random Zoom

Guo, Rana, Cissé, et al. [13] considered cropping and
rescaling of an image as one of their defenses, which
is effectively zooming in on a portion of the image, an
approach that was defeated by Athalye, Engstrom, Ilyas,
et al. [11]. We reuse this as one of our defenses, where
the distance from each edge of the image is cropped by
U [10, 50], independently for each edge.

h, w, _ = img.shape

i_s = np.random.random_integers(10, 50)
i_e = np.random.random_integers(10, 50)
j_s = np.random.random_integers(10, 50)

Figure 13: Random Zoom

j_e = np.random.random_integers(10, 50)

params = [i_s/50, i_e/50, j_s/50, j_e/50]

i_e = h-i_e
j_e = w-j_e

#Crop the image...
img = img[i_s:i_e,j_s:j_e,:]
#...now scale it back up
img = skimage.transform.resize(img, (h, w, 3))

return img, params

C.6.2. Seam Carving Expansion

Seam Carving [29] is an approach to find irregular
but contiguous paths of pixels through an image, such
that the pixels along the path can be removed while
avoiding perturbation of the main image content. This
allows for a type of fast content aware image zooming,
which we use as another defense.

We randomly select some number of pixels x, y ∼
U [10, 50] to remove from the image horizontally or ver-
tically. With a 50% chance, we will only remove pixels
from one axis of the image instead of both. Once the
pixels are removed, we re-scale the image back to its
original height and width.

h, w, _ = img.shape

both_axis = np.random.choice(2) == 0
toRemove_1 = np.random.random_integers(10, 50)
toRemove_2 = np.random.random_integers(10, 50)

params = [both_axis, toRemove_1/50, toRemove_2/50]

if both_axis:
#First remove from vertical
eimg = skimage.filters.sobel(

skimage.color.rgb2gray(img))↪→

img = skimage.transform.seam_carve(img, eimg,
'vertical', toRemove_1)↪→

#Now from horizontal
eimg = skimage.filters.sobel(

skimage.color.rgb2gray(img))↪→

img = skimage.transform.seam_carve(img, eimg,
'horizontal', toRemove_2)↪→

else:
eimg = skimage.filters.sobel(

skimage.color.rgb2gray(img))↪→

direction = 'horizontal'

Figure 14: Seam Carving Expansion

Figure 15: Alter HSV

if toRemove_2 < 30:
direction = 'vertical'

img = skimage.transform.seam_carve(img, eimg,
direction, toRemove_1)↪→

#Now scale it back up
img = skimage.transform.resize(img, (h, w, 3))

return img, params

C.7. Color Space Group

C.7.1. Alter HSV

Hue is modified by a value h ∼ U [−0.05, 0.05] and
both the Saturation and Value channels are modified
by a random value sampled from s, v ∼ U [−0.25, 0.25].
img = color.rgb2hsv(img)

params = []

#Hue
img[:,:,0] += randUnifC(-0.05, 0.05, params=params)
#Saturation
img[:,:,1] += randUnifC(-0.25, 0.25, params=params)
#Value
img[:,:,2] += randUnifC(-0.25, 0.25, params=params)

img = np.clip(img, 0, 1.0)
img = color.hsv2rgb(img)
img = np.clip(img, 0, 1.0)

return img, params

C.7.2. Alter XYZ

With this transformation, the image is converted to
the CIE 1931 XYZ colorspace, perturbed, and then
converted back to RGB. All three color channels will
be modified by a different random value, sampled as
x, y, z ∼ U [−0.25, 0.25].

Figure 16: Alter XYZ

Figure 17: Alter LAB

img = color.rgb2xyz(img)

params = []
#X
img[:,:,0] += randUnifC(-0.05, 0.05, params=params)
#Y
img[:,:,1] += randUnifC(-0.05, 0.05, params=params)
#Z
img[:,:,2] += randUnifC(-0.05, 0.05, params=params)

img = np.clip(img, 0, 1.0)
img = color.xyz2rgb(img)
img = np.clip(img, 0, 1.0)

return img, params

C.7.3. Alter LAB
With this transformation, the image is converted to

the CIELAB colorspace, perturbed, and then converted
back to RGB. The L∗ channel is modified by a value l ∼
U [−5, 5], and both the a∗ and b∗ channels are modified
by a random value sampled from a, b ∼ U [−2, 2].
img = color.rgb2lab(img)

params = []
#L
img[:,:,0] += randUnifC(-5.0, 5.0, params=params)
#a
img[:,:,1] += randUnifC(-2.0, 2.0, params=params)
#b
img[:,:,2] += randUnifC(-2.0, 2.0, params=params)

L ∈ [0,100] so clip it; a & b channels can have
negative values.↪→

img[:,:,0] = np.clip(img[:,:,0], 0, 100.0)

img = color.lab2rgb(img)
img = np.clip(img, 0, 1.0)

return img, params

Figure 18: Alter YUV

C.7.4. Alter YUV
Both the U and V channels are modified by a random

value sampled from u, v ∼ U [−0.02, 0.02], and Y is
modified by a value y ∼ U [−0.05, 0.05].
img = color.rgb2yuv(img)

params = []
#Y
img[:,:,0] += randUnifC(-0.05, 0.05, params=params)
#U
img[:,:,1] += randUnifC(-0.02, 0.02, params=params)
#V
img[:,:,2] += randUnifC(-0.02, 0.02, params=params)

U & V channels can have negative values; clip only Y
img[:,:,0] = np.clip(img[:,:,0], 0, 1.0)

img = color.yuv2rgb(img)
img = np.clip(img, 0, 1.0)

return img, params

C.8. Contrast Group

C.8.1. Histogram Equalization
The first transformation in this group performs the

simplest of histogram equalizations, applied separately
over each channel. All channels use the same number
of bins for the histogram, which is chosen from bins ∼
U [40, 256].
nbins = np.random.random_integers(40, 256)

params = [nbins/256.0]

for i in range(3):
img[:,:,i] = skimage.exposure.equalize_hist(

img[:,:,i], nbins=nbins)↪→

return img, params

C.8.2. Adaptive Histogram Equalization
For the adaptive case we use the Contrast Lim-

ited Adaptive Histogram Equalization (clahe) algo-
rithm [30]. With a 50% probability, the adaptive his-
togram equalization is applied on either the whole image
or on a channel-by-channel basis. For every application
of the process, the kernel width and heights are selected

Figure 19: Histogram Equalization

Figure 20: Adaptive Histogram Equalization

as kw, kh ∼ U [22, 37]. A clip limit parameter is chosen
as c ∼ U [0.01, 0.04].
min_size = min(img.shape[0], img.shape[1])/10
max_size = min(img.shape[0], img.shape[1])/6
per_channel = np.random.choice(2) == 0

params = [per_channel]

kernel_h = [randUnifI(min_size, max_size,
params=params) for x in range(3)]↪→

kernel_w = [randUnifI(min_size, max_size,
params=params) for x in range(3)]↪→

clip_lim = [randUnifC(0.01, 0.04, params=params) for
x in range(3)]↪→

if per_channel:
for i in range(3):

kern = (kernel_w[i], kernel_h[i])
img[:,:,i] =

skimage.exposure.equalize_adapthist(
img[:,:,i], kernel_size=kern,
clip_limit=clip_lim[i])

↪→

↪→

↪→

else:
kern = (kernel_w[0], kernel_h[0])
img = skimage.exposure.equalize_adapthist(img,

kernel_size=kern, clip_limit=clip_lim[0])↪→

return img, params

C.8.3. Contrast Stretching
The last approach we consider in this group performs

a simple re-scaling of all values within a channel to
“stretch” to a specified minimum and maximum value.
With a 50% probability this will be done on the whole
image at once with a single value range, or on a channel-
by-channel basis with a different min and max value
for each channel. The minimum will be selected from
min ∼ U [0.01, 0.04], and the maximum from max ∼
U [0.96, 0.99].

Figure 21: Contrast Stretching

per_channel = np.random.choice(2) == 0

params = [per_channel]

low_precentile = [randUnifC(0.01, 0.04, params=params)
for x in range(3)]↪→

hi_precentile = [randUnifC(0.96, 0.99, params=params)
for x in range(3)]↪→

if per_channel:
for i in range(3):

p2, p98 = np.percentile(img[:,:,i],
(low_precentile[i]*100,
hi_precentile[i]*100))

↪→

↪→

img[:,:,i] =
skimage.exposure.rescale_intensity(
img[:,:,i], in_range=(p2, p98))

↪→

↪→

else:
p2, p98 = np.percentile(img, (low_precentile[0] *

100, hi_precentile[0]*100))↪→

img = skimage.exposure.rescale_intensity(img,
in_range=(p2, p98))↪→

return img, params

C.8.4. Grey Scale Mix
Each channel is given a random weight sampled as

wr, wg, wb ∼ U [0, 1], and then all channels are set to
the same weighted average of the channels (i.e., Igrey =
(wr ·R+ wg ·G+ wb ·B)/(wr + wg + wb). Then each
channel is set to this value (R′ = G′ = B′ = Igrey)
to create a grey scale image. This is an alteration of
a crude form of grey scale transformation where each
channel contributes equally.
average of color channels, different contribution

for each channel↪→

ratios = np.random.rand(3)
ratios /= ratios.sum()

params = [x for x in ratios]

img_g = img[:,:,0] * ratios[0] + img[:,:,1] *
ratios[1] + img[:,:,2] * ratios[2]↪→

for i in range(3):
img[:,:,i] = img_g

return img, params

C.8.5. Grey Scale Partial Mix
This is the same as the Grey Scale Mix transform, in

that we first compute a random weighted average grey

Figure 22: Grey Scale Mix

Figure 23: Grey Scale Partial Mix

scale image Igrey. Then, instead of simply setting each
channel to the new grey value, we randomly interpolate
between the original channel’s value and the grey scale
target. So we sample pr, pg, pb ∼ U [0, 1] and set each
channel as the interpolated value (e.g., R′ = pr · R +
(1− pr) · Igrey).
ratios = np.random.rand(3)
ratios/=ratios.sum()

prop_ratios = np.random.rand(3)

params = [x for x in ratios] + [x for x in
prop_ratios]↪→

img_g = img[:,:,0] * ratios[0] + img[:,:,1] *
ratios[1] + img[:,:,2] * ratios[2]↪→

for i in range(3):
p = max(prop_ratios[i], 0.2)
img[:,:,i] = img[:,:,i]*p + img_g*(1.0-p)

return img, params

C.8.6. 2/3 Grey Scale Mix
This technique is also similar to Grey Scale Mix,

but here we randomly select one of the three channels
to exclude. The remaining two channels will have a
randomly weighted average computed, and the same
two channels will be set to this new grey image. The
randomly selected channel will be left as is, so only two
of three channels will have been altered.

params = []

Pick a channel that will be left alone and remove it
from the ones to be averaged↪→

channels = [0, 1, 2]
remove_channel = np.random.choice(3)
channels.remove(remove_channel)

Figure 24: 2/3 Grey Scale Mix

params.append(remove_channel)

ratios = np.random.rand(2)
ratios/=ratios.sum()
params.append(ratios[0]) #They sum to one, so first

item fully specifies the group↪→

img_g = img[:,:,channels[0]] * ratios[0] +
img[:,:,channels[1]] * ratios[1]↪→

for i in channels:
img[:,:,i] = img_g

return img, params

C.8.7. One Channel Partial Grey

In this case, we randomly pick one channel to convert
to the grey scale value, and leave the other two channels
alone. The value used will be a random weighted aver-
age from the other two channels (each weight sampled
from U [0, 1]), and similar to Grey Scale Partial Mix,
we will interpolate the grey scale value Igrey with the
randomly selected channel using a ratio chosen from
U [0.1, 0.9].

params = []

Pick a channel that will be altered and remove it
from the ones to be averaged↪→

channels = [0, 1, 2]
to_alter = np.random.choice(3)
channels.remove(to_alter)
params.append(to_alter)

ratios = np.random.rand(2)
ratios/=ratios.sum()
params.append(ratios[0]) #They sum to one, so first

item fully specifies the group↪→

img_g = img[:,:,channels[0]] * ratios[0] +
img[:,:,channels[1]] * ratios[1]↪→

Lets mix it back in with the original channel
p = (0.9-0.1)*np.random.random(1)[0] + 0.1
params.append(p)

img[:,:,to_alter] = img_g*p + img[:,:,to_alter]
*(1.0-p)↪→

return img, params

Figure 25: One Channel Partial Grey

Figure 26: Gaussian Blur

C.9. Denoising Group

C.9.1. Gaussian Blur
The first technique in this group is a simple Gaussian

blur. To add randomness, each channel will have a
different blur strength chosen from σ ∼ U [0.1, 3]. With
a 50% probability, all channels will be set to use the
same σ.
if randUnifC(0, 1) > 0.5:

sigma = [randUnifC(0.1, 3)]*3
else:

sigma = [randUnifC(0.1, 3), randUnifC(0.1, 3),
randUnifC(0.1, 3)]↪→

img[:,:,0] = skimage.filters.gaussian(img[:,:,0],
sigma=sigma[0])↪→

img[:,:,1] = skimage.filters.gaussian(img[:,:,1],
sigma=sigma[1])↪→

img[:,:,2] = skimage.filters.gaussian(img[:,:,2],
sigma=sigma[2])↪→

return img, [x/3.0 for x in sigma]

C.9.2. Median Filter
Next we use a simple median filter, and follow the

same approach as the Guassian blur. The radius of
the blur kernel is chosen from r ∼ U [2, 5], with a 50%
chance all channels are forced to use the same radius.
if randUnifC(0, 1) > 0.5:

radius = [randUnifI(2, 5)]*3
else:

radius = [randUnifI(2, 5), randUnifI(2, 5),
randUnifI(2, 5)]↪→

median blur - different sigma for each channel
for i in range(3):

mask = skimage.morphology.disk(radius[i])
img[:,:,i] = skimage.filters.rank.median(

img[:,:,i], mask) / 255.0↪→

return img, [x/5.0 for x in radius]

Figure 27: Median Filter

Figure 28: Mean Filter

C.9.3. Mean Filter
This is the same as the median filter described above,

but using a mean. It was used as an attempted defensive
technique by Li and Li [12]. We choose the radius
randomly from r ∼ U [2, 3] instead of using a fixed
radius.

if randUnifC(0, 1) > 0.5:
radius = [randUnifI(2, 3)]*3

else:
radius = [randUnifI(2, 3), randUnifI(2, 3),

randUnifI(2, 3)]↪→

mean blur w/ different sigma for each channel
for i in range(3):

mask = skimage.morphology.disk(radius[i])
img[:,:,i] = skimage.filters.rank.mean(img[:,:,i],

mask)/255.0↪→

return img, [x/3.0 for x in radius]

C.9.4. Mean Bilateral Filter
Next we use mean bilateral filtering, which is an edge

preserving filter [31]. We apply it on a channel-wise
basis. The implementation we use has 3 parameters,
including the radius, that we set using values sampled
from U [5, 20].
params = []
radius = []
ss = []

for i in range(3):
radius.append(randUnifI(2, 20, params=params))
ss.append(randUnifI(5, 20, params=params))
ss.append(randUnifI(5, 20, params=params))

for i in range(3):
mask = skimage.morphology.disk(radius[i])
img[:,:,i] = skimage.filters.rank.mean_bilateral(

img[:,:,i], mask, s0=ss[i], s1=ss[3+i])/255.0↪→

Figure 29: Mean Bilateral Filter

Figure 30: Chambolle Denoising

return img, params

C.9.5. Chambolle Denoising
We apply Chambolle’s total variation denoising al-

gorithm [38] as a potential defense. We choose the
algorithm’s weight parameter from w ∼ U [0.05, 0.25]
and with a 50% chance apply it on either the whole
image holistically, or on a channel-by-channel basis.

params = []

weight = (0.25-0.05)*np.random.random(1)[0] + 0.05
params.append(weight)

multi_channel = np.random.choice(2) == 0
params.append(multi_channel)

img = skimage.restoration.denoise_tv_chambolle(img,
weight=weight, multichannel=multi_channel)↪→

return img, params

C.9.6. Wavelet Denoising
We apply wavelet denoising [32] using the Daubechies

1 wavelet as another defense. Wavelets where used by
Prakash, Moran, Garber, et al. [15] but easily defeated
with BPDA [17]. For the randomized parameters, we
use a 50% chance to first convert to the YCbCr color
space first (the scikit-image documentation recommends
this to improve results), a 50:50 chance to select between
soft and hard thresholding of the filter, and a 50:50
chance to use either 0 or 1 levels of the wavelets.

convert2ycbcr = np.random.choice(2) == 0
wavelet = np.random.choice(self.wavelets)
mode_ = np.random.choice(["soft", "hard"])
denoise_kwargs = dict(multichannel=True,

convert2ycbcr=convert2ycbcr, wavelet=wavelet,
mode=mode_)

↪→

↪→

Figure 31: Wavelet Denoising

max_shifts = np.random.choice([0, 1])

params = [convert2ycbcr, self.wavelets.index(wavelet)/
float(len(self.wavelets)), max_shifts/5.0,
(mode_=="soft")]

↪→

↪→

img = skimage.restoration.cycle_spin(img,
func=skimage.restoration.denoise_wavelet,
max_shifts=max_shifts, func_kw=denoise_kwargs,
multichannel=True, num_workers=1)

↪→

↪→

↪→

return img, params

Initially we wanted to use a wider spectrum of possible
wavelets and levels for this filter, but found them to be
too computationally demanding.

C.9.7. Non-Local Means Denoising

The last denoising approach we apply is a fast Non-
Local Means denoising [39], which is edge preserving
and beneficial when repeated patterns are present. This
same transform was used by Xu, Evans, and Qi [27].
With a 50% chance we will apply this denoising to either
the image holistically, or on a channel-by-channel basis.
The patch-size parameter is chosen from U [5, 7], and
the patch-distance from U [6, 11]. A third random value
is used to perturb the estimation of the variance σ, and
is better understood through the code in the appendix.

h_1 = randUnifC(0, 1)

params = [h_1]

sigma_est = np.mean(
skimage.restoration.estimate_sigma(img,
multichannel=True))

↪→

↪→

h = (1.15-0.6)*sigma_est*h_1 + 0.6*sigma_est
#If false, it assumes some weird 3D stuff
multi_channel = np.random.choice(2) == 0
params.append(multi_channel)
#Takes too long to run without fast mode.
fast_mode = True
patch_size = np.random.random_integers(5, 7)
params.append(patch_size)
patch_distance = np.random.random_integers(6, 11)
params.append(patch_distance)

if multi_channel:
img = skimage.restoration.denoise_nl_means(img,

h=h, patch_size=patch_size,
patch_distance=patch_distance,
fast_mode=fast_mode)

↪→

↪→

↪→

Figure 32: Non-Local Means Denoising

else:
for i in range(3):

sigma_est = np.mean(
skimage.restoration.estimate_sigma(
img[:,:,i], multichannel=True))

↪→

↪→

h = (1.15-0.6)*sigma_est*params[i] +
0.6*sigma_est↪→

img[:,:,i] =
skimage.restoration.denoise_nl_means(
img[:,:,i], h=h, patch_size=patch_size,
patch_distance=patch_distance,
fast_mode=fast_mode)

↪→

↪→

↪→

↪→

return img, params

D. FGSM Figures

We found the FGSM attack to be significantly less
effective than PGD and so concentrated our efforts
on the stronger PGD attack. For completeness, we
include the results from the FGSM experiments here in
Figure 33.

Note that in Figure 33b, Adversarial Training out-
performs BaRT, but Kurakin, Goodfellow, and Bengio
specifically trained their models to withstand the FGSM
attack. They report that providing a similar defense
against PGD was nearly computationally intractable
and provided no benefits over training with FGSM.

E. BaRT Ensembles

BaRT is premised on the amalgamation of multiple
weak defenses into one stronger system. We can further
extend BaRT as a “self-ensembling” technique, by aver-
aging the predictions of BaRT over multiple realizations
of t(·). Because t(·) represents the randomized process
of selecting multiple transformations with random pa-
rameterizations, each invocation of t(·) will produce a
different image, and thus our model will produce a dif-
ferent result. In this way the BaRT technique can be
used as an ensemble approach without any additional
work, as the intrinsic nature of t(·) provides the diversity
of outputs that is a necessary condition for an ensemble
to improve on the performance of its members [40].

To attack our ensembled BaRT defense, we note that
since we are only averaging the results of the same
model f(·), no changes are necessary for running our

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Number of transforms selected

A
cc
ur
ac
y

No attack Top-1 No attack Top-5
FGSM Top-1 FGSM Top-5

(a)

2 4 8 16 22 32
0

0.2

0.4

0.6

0.8

1

Max Adversary Distance ε

A
cc
ur
ac
y

BaRT Top-1 Bart Top-5
Adv. Train Top-1 Adv. Train Top-5

(b)

Figure 33: Results of FGSM attacks. (a) Accuracy of BaRT for a varying number of transforms, when not under
attack and when being attacked by FGSM. (b) Accuracy of BaRT and the an Adversarially Trained model when
under attack by FGSM for varying adversarial distances.

attack and obtaining correct gradient estimates. How-
ever, considering an ensemble of size Q, it would not be
fair to leave the PGD attack iteration zPGD the same
in evaluation. For this reason, for an ensemble of size
Q we will use Q · zPGD attack iterations. We leave the
number of EoT iterations zEoT = 10 , and will only con-
sider an maximal adversarial attack distance of ε = 8.
While we would prefer to vary zEoT and ε as well, we do
not have the computational resources to run all of these
experiments. We choose zPGD as the parameter to in-
crease because it allows us to simultaneously perform a
larger attack against the standard BaRT model (with-
out any ensembling), which is an indepdently valuable
experiment to determine the robustness of the BaRT
method. (See Appendix F.)

The results on un-targeted attacks can be seen in
Figure 34a. For all of these experiments, we used k = 5
random transformations per ensemble member, 10 EoT
steps for the adversary, and a maximum adversarial
distance of ε = 8.

One of the drawbacks of BaRT is a decrease in ac-
curacy when the model is not being attacked by an
adversary. This downside can be completely eliminated
by ensembling: both Top-1 and Top-5 accuracy can be
improved to the level of the baseline ResNet model that
had no prepossessing transforms applied.

We also observe that Top-5 accuracy when under at-
tack by PGD improves significantly (from 55.4% with

a single member to 71.4% with a thirteen member en-
semble), although the Top-1 accuracy does not show
an improvement. We suspect two factors are a play
that result in this phenomena. 1) The variance intro-
duced by our transforms t(·) can impede the model’s
ability to get the correct class as the Top-1 prediction,
especially when multiple classes are related and small
details become necessary to make distinctions. Because
of the correlated classes, we expect the variance to be
greatest in the Top-1 and Top-2 predictions, and for
the variance to decrease with the prediction rank. 2)
The variance reduction obtained by ensembling is of the
same order of magnitude as the variance introduced to
the Top-1 and Top-2 predictions, causing the effects to
“cancel out” and result in the same accuracy. The Top-
5 predictions would then have a lower initial variance,
which more easily averaged out by voting, resulting in
an improved accuracy. This would explain why the ac-
curacy at Top-1 remains relatively stable, but has a
more significant improvement in the Top-5 regime.

The effects of ensembling on targeted attacks are
shown in Figure 34b. The attack parameters were the
same as those used on the un-targeted attacks above.
The FGSM attack was too weak to draw any conclusions.
We see some evidence that ensembling improves robust-
ness against targeted PGD attacks, although there was
too much variability in outcome to make definitive con-
clusions. In order to reduce variation, we ran these

1 3 5 7 9 11 13

0

0.2

0.4

0.6

0.8

1

Ensemble size

A
cc
ur
ac
y

No attack Top-1 No attack Top-5
FGSM Top-1 FGSM Top-5
PGD Top-1 PGD Top-5

(a)

1 3 5 7 9 11 13

0

0.01

0.02

0.03

0.04

0.05

0.06

Ensemble size

A
tt
ac
ke
r
su
cc
es
s

Targetted FGSM
Targetted PGD

(b)

Figure 34: The effect of ensemble size on BaRT performance. In both figures, ensembles were formed by voting
after the final softmax activation. (a) Accuracy of the model when varying size of ensemble for un-targeted attacks.
The gray horizontal lines represent baseline model accuracy when no transforms or attacks are applied (solid: Top-1
accuracy; dashed: Top-5 accuracy). (b) Success of the adversary of when varying size of ensemble for targeted
attacks.

experiments across 2000 images (two from each class)
instead of 1000 images as in the targeted experiments
reported elsewhere in the paper.

In Figure 35 we report the same results, but with
ensembles where the final decision was the result of
adding the logits of the members, i.e. before the final
softmax activation was performed. This is less reason-
able than performing the aggregation after the softmax,
but because the base learners are so similar (indeed,
they are identical except for choice of random prepos-
sessing steps) their logits are in the same range and
can be effectively averaged. We find no significant dif-
ference between combining ensemble members before
and after softmax activation for untargetted attacks,
which accords with the results on ensembling similar
base networks reported by Ju, Bibaut, and Laan [41].
Interestingly, the performance against targeted attacks
appears considerably better when aggregating logits.
(Compare Figure 34b and Figure 35b.) As noted above
these results are particularly noisy and since we do not
have a hypothesis about why averaging logits would im-
prove defense in this situation, we do not wish to read
too much into this improvement.

As a final set of experiments, we consider the trade-off
between the “width” and “depth” of a defensive ensemble.

“Width” refers to the number of ensemble members,
and “depth” to the number of transforms applied to
the input of each member. We did this in order to
answer the following question: If you had a limited
transformation budget, would it be better to apply
more of them in series to fewer networks, or to apply
fewer transformations in parallel to more networks?

Figure 37 shows the results for total transformation
budgets ranging from three to ten. For each one of the
the subplots, the left side shows the results of having
a single network with n transforms applied in series
to the input, while the right side shows the results of
an ensemble of n different networks each using only
a single transform. In between are intermediate sized
ensembles. For example, the bottom left (“Transform
Budget 9”) shows the effect of having a single network
with nine transforms applied in series, three networks
with three transforms each, and nine networks with one
transform each.

Across the different transform budgets, having a
single network with the maximum number of transforms
is best if you want to maximize the Top-1 accuracy
when under attack, but having a larger ensemble with
fewer transforms applied to each member is better for
Top-5 accuracy or when the system is not under attack.

1 3 5 7 9 11 13

0

0.2

0.4

0.6

0.8

1

Ensemble size

A
cc
ur
ac
y

No attack Top-1 No attack Top-5
FGSM Top-1 FGSM Top-5
PGD Top-1 PGD Top-5

(a)

1 3 5 7 9 11 13

0

0.01

0.02

0.03

0.04

0.05

0.06

Ensemble size

A
tt
ac
ke
r
su
cc
es
s

Targetted FGSM
Targetted PGD

(b)

Figure 35: The effect of ensemble size on BaRT performance. In both figures, ensembles were formed by voting
based on the member networks’ logits, before the final softmax activation. (a) Accuracy of model when varying size
of ensemble for un-targeted attackss. The gray horizontal lines represent model accuracy when no transforms or
attacks are applied (solid: Top-1 accuracy; dashed: Top-5 accuracy). (b) Success of the adversary of when varying
size of ensemble for targeted attacks.

These results indicate that a defensive actor may be
able to manipulate width-vs-height as a meta-parameter
in order to respond to their particular context. However,
more experiments should be run on larger transform
budgets before drawing strong conclusions. Applying
only one or two transformations before doing inference
does not take full advantage of the compounding na-
ture of applying randomized transformations serially.
Having only one or two members of an ensemble does
not take full advantage of the the ensemble’s ability to
trade higher variance for lower bias. Of all of the re-
sults shown in Figure 37, only one experimental set-up
has an ensemble size greater than two and uses more
than two transforms per ensemble member: the middle
condition of Transform Budget 9, with an ensemble of
three networks with three transforms each.

In order to address this limitation, we re-ran the
experiments with transform budgets up to 16. (See
Figure 38.) This required a slight change to the way
BaRT ensembles and the BPA models were constructed,
since our total set of transforms was grouped into ten
categories. Previously, selections were made without
replacement, but this constraint needed to be dropped
in order to support using more than ten pre-processing
transformations in series on a given input. The results

are qualitatively similar to those for transform budgets
up to ten, although there is some indication that ensem-
bles of size two and three may be useful for improving
Top-1 accuracy against FGSM, and in the Transform
Budget = 16 case, against PGD as well.

We also ran experiments comparing width and depth
on targeted attacks (Figure 39). The FGSM attack was
not strong enough to produce a success rate above 0.2%
in any condition. The PGD attack always achieved bet-
ter success rates as ensemble size increased (i.e. as the
number of transformed applied in serial decreased). The
results were similar when we tested transform transform
budgets up to 16.

F. Increasing PGD Strength

By scaling the strength of the PGD attack as the
ensemble size increased we were also able to judge the
effect increasing the attack iterations have on a single
(non-ensembled) network. As can be seen in Figure 36,
increasing the number of attack iterations from 40 to
520 had a negligible effect on accuracy. Top-1 accuracy
decreased from 19.40% to 18.30% and Top-5 accuracy
decreased from 55.40% to 55.00%. While it is somewhat
surprising that increased attack strength does not have
a more dramatic impact on accuracy, we feel that the

40 120 200 280 360 440 520

0

0.2

0.4

0.6

0.8

1

PGD Steps

A
cc
ur
ac
y

PGD Top-1
PGD Top-5

Figure 36: Accuracy of the model when under attack by
PGD with a varying number of iterations in the attack.

results of Appendix A and especially Appendix B offer
some explanation. To wit, when a sufficient number of
transformations are applied to the input image consec-
utive gradient updates are nearly orthogonal to each
other. Because more iterations do not lead the adver-
sary any closer to an image which successfully fools the
model, increasing the number of adversarial iterations
does not result in a lower accuracy.

1 3

0

0.2

0.4

0.6

0.8

1

A
cc
ur
ac
y

Transform Budget = 3

1 2 4

0

0.2

0.4

0.6

0.8

1

Transform Budget = 4

1 5

0

0.2

0.4

0.6

0.8

1

Transform Budget = 5

1 2 3 6

0

0.2

0.4

0.6

0.8

1

A
cc
ur
ac
y

Transform Budget = 6

1 7

0

0.2

0.4

0.6

0.8

1

Transform Budget = 7

1 2 4 8

0

0.2

0.4

0.6

0.8

1

Transform Budget = 8

1 3 9

0

0.2

0.4

0.6

0.8

1

Ensemble size

A
cc
ur
ac
y

Transform Budget = 9

1 2 5 10

0

0.2

0.4

0.6

0.8

1

Ensemble size

Transform Budget = 10

No attack Top-1
No attack Top-5
FGSM Top-1
FGSM Top-5
PGD Top-1
PGD Top-5

Figure 37: Accuracy of model when trading off between ensembles of many networks with fewer transforms and a
single network with more transforms. For each subplot, the total number of transforms available is constant. For
example, the bottom left subplot shows the three conditions in which nine transforms can be applied: an “ensemble”
of size one with nine transforms applied to its input (on the left of the x-axis), an ensemble of three networks, each
with using three transforms (in the middle), or an ensemble of nine networks, each with a single transform (on the
right of the x-axis). The number of preprocessing transforms is therefore given by the transform budget divided by
the ensemble size. The gray horizontal lines represent model accuracy when no transforms or attacks are applied
(solid: Top-1 accuracy; dashed: Top-5 accuracy). Larger transform budgets are shown in Figure 38.

1 11

0

0.2

0.4

0.6

0.8

1

A
cc
ur
ac
y

Transform Budget = 11

1 2 3 4 6 12

0

0.2

0.4

0.6

0.8

1

Transform Budget = 12

1 13

0

0.2

0.4

0.6

0.8

1

Transform Budget = 13

1 2 7 14

0

0.2

0.4

0.6

0.8

1

Ensemble size

A
cc
ur
ac
y

Transform Budget = 14

1 3 5 15

0

0.2

0.4

0.6

0.8

1

Ensemble size

Transform Budget = 15

1 2 4 8 16

0

0.2

0.4

0.6

0.8

1

Ensemble size

Transform Budget = 16

No attack Top-1 No attack Top-5
FGSM Top-1 FGSM Top-5
PGD Top-1 PGD Top-5

Figure 38: Accuracy of model when trading off between ensembles of many networks with fewer transforms and
a single network with more transforms. For each subplot, the total number of transforms available is constant.
For example, the bottom left subplot shows the three conditions in which fourteen transforms can be applied: an
“ensemble” of size one with fourteen transforms applied to its input (on the left end of the x-axis), an ensemble of
two networks, each with using seven transforms (just to the right), an ensemble of seven networks each using two
transforms (in the middle of the x-axis), or an ensemble of fourteen networks, each with a single transform (on the
right of the x-axis). The number of preprocessing transforms is therefore given by the transform budget divided by
the ensemble size. The gray horizontal lines represent model accuracy when no transforms or attacks are applied
(solid: Top-1 accuracy; dashed: Top-5 accuracy). Transform budgets between three and ten are shown in Figure 37.

1 3

0

0.2

0.4

0.6

0.8

1

A
tt
ac
ke
r
su
cc
es
s

Transform Budget = 3

1 2 4

0

0.2

0.4

0.6

0.8

1

Transform Budget = 4

1 5

0

0.2

0.4

0.6

0.8

1

Transform Budget = 5

1 2 3 6

0

0.2

0.4

0.6

0.8

1

A
tt
ac
ke
r
su
cc
es
s

Transform Budget = 6

1 7

0

0.2

0.4

0.6

0.8

1

Transform Budget = 7

1 2 4 8

0

0.2

0.4

0.6

0.8

1

Transform Budget = 8

1 3 9

0

0.2

0.4

0.6

0.8

1

Ensemble size

A
tt
ac
ke
r
su
cc
es
s

Transform Budget = 9

1 2 5 10

0

0.2

0.4

0.6

0.8

1

Ensemble size

Transform Budget = 10

FGSM
PGD

Figure 39: The attacker’s success rate when trading off between ensembles of many networks with fewer transforms
and a single network with more transforms. For each subplot, the total number of transforms available is constant.
For example, the bottom left subplot shows the three conditions in which nine transforms can be applied: an
“ensemble” of size one with nine transforms applied to its input (on the left of the x-axis), an ensemble of three
networks, each with using three transforms (in the middle), or an ensemble of nine networks, each with a single
transform (on the right of the x-axis). The number of preprocessing transforms is therefore given by the transform
budget divided by the ensemble size.

